Локально-вычислительные сети. Лвс - это технологии настоящего

С помощью персонального компьютера пользователь может обмениваться с другими людьми различной информацией (документами, программами и т.п.). Для этого можно использовать дискеты, диски и накопители памяти. Не всегда перемещение носителя той или иной информации возможно между компьютерами, либо это может занять достаточно много времени. Необходимость в быстром доступе к информационным ресурсам, принтерам и другим устройствам привела к созданию компьютерных сетей.

Простая локальная сеть

Что такое локальная сеть? Это система, позволяющая объединить компьютеры, которые установлены на достаточно небольшом удалении друг от друга (например, в одном здании или помещении).

В локальную сеть объединяют компьютеры, установленные в кабинете информатики в школе, а также другие компьютеры и принтеры, находящиеся в других кабинетах.

Сети с сервером

В небольших сетях компьютеры, как правило, равноправны. Локальная сеть между компьютерами позволяет всем пользователям получать доступ к открытым документам и папкам. К тому же пользователи могут самостоятельно решать, на какие ресурсы компьютера открыть доступ для других пользователей данной сети (это могут быть принтеры, диски и т.д.). После получения доступа человек, работающий за другим компьютером локальной сети, сможет пользоваться ресурсами другого компьютера.

Основной недостаток таких сетей - это слабый уровень защиты информации от неразрешенного доступа.

Чтобы обеспечить максимальную информационную безопасность, один из компьютеров, работающих в локальной сети, может стать сервером, на котором будет храниться вся самая важная информация. Доступ к этим данным сможет установить только один человек - администратор.

Компьютеры, находящиеся в локальной сети, работающие на ОС Windows, находятся в папке «Сеть», а устройства с ОС Linux - в папке «Сетевые ресурсы». В Windows нажатие на значок «Сеть», находящийся на Рабочем столе, открывает папку с компьютерами, входящими в состав локальной сети.

В свою очередь, каждый из этих компьютеров тоже является папкой, которая содержит диски. Если к дискам, принтеру или папкам открыть доступ, то каждый пользователь сети сможет воспользоваться ими так же, как своими собственными. Он сможет копировать их, удалять и переименовывать, а также использовать принтер, печатая на нем документы.

Обеспечение локальных сетей

Что такое локальная сеть, и какое оборудование требуется для ее обеспечения? Все компьютеры и принтеры, подключенные к локальной сети, должны быть с сетевой платой. Ее основная функция - передача и получение различной информации из локальной сети. Сети бывают проводные и беспроводные.

Работает проводная локальная сеть через соединение сетевых плат компьютеров между собой при помощи витой пары. Беспроводные же сети используют в качестве основного сетевого устройства точку доступа. В таком случае на каждом компьютере нужно установить особую беспроводную сетевую плату типа Wi-Fi.

История создания локальных вычислительных сетей (ЛВС, LAN)

Разбирая вопрос о том, что такое локальная сеть, следует отметить, что изначально компьютерные сети были довольно небольшими. Они соединяли около 10 компьютеров и принтер. Технология, используемая для передачи данных в сети, ограничивала ее размеры, включая количество подключенных устройств и физическую длину сети. К примеру, в 1980-х годах самыми популярными были сети, не превышающие 30 компьютеров. Протяженность кабеля при этом была максимум 185 м.

Подобные сети можно было с легкостью расположить на одном этаже какого-то здания или небольшого учреждения. Некрупные фирмы знают, что такое локальная сеть и какие преимущества она может дать. Поэтому они и в настоящее время используют для своей работы подобную конфигурацию, поскольку она им отлично подходит.

Локальная вычислительная сеть (ЛВС)

Что такое Они представляют собой систему коммуникации, которая позволяет совместно пользоваться ресурсами подключенных компьютеров. Это могут быть принтеры, модемы, диски, CD-ROM и прочие устройства. Локальные вычислительные сети позволяют расположить устройства на значительном расстоянии друг от друга (до нескольких километров). Как правило, их соединяют скоростные линии связи, скорость обмена при этом составляет от 1-10 Мбит за секунду и более. Не исключено соединение компьютеров при помощи телефонных линий.

Создается такая локальная сеть между компьютерами какой-нибудь организации (компании, организации), поэтому ее чаще всего называют корпоративной. Компьютеры в этом случае располагаются в пределах помещения, здания либо соседнего строения.

Программное обеспечение компьютера выполняет 2 функции: управляет собственными ресурсами и обменивается ими с другими компьютерами.

Собственные ресурсы компьютера находятся в управлении операционной системы. Сетевое управление, в свою очередь, выполняет сетевое ПО.

Функциональные группы устройств в сети

Основное назначение любой компьютерной сети - предоставление информационных и вычислительных ресурсов подключенным к ней пользователям.

С этой точки зрения локальную вычислительнуюсеть можнорассматривать как совокупность серверов и рабочих станций.

Сервер - компьютер, подключенный к сети и обеспечивающий ее пользователей определенными услугами.

Серверы могут осуществлять хранение данных, управление базами данных, удаленную обработку заданий, печать заданий и ряд других функций, потребность в которых может возникнуть у пользователей сети. Сервер - источник ресурсов сети.

Рабочая станция - персональный компьютер, подключенный к сети, через который пользователь получает доступ к ее ресурсам.

Рабочая станция сети функционирует как в сетевом, так и в локальном режиме. Она оснащена собственной операционной системой (MS DOS, Windows и т.д.), обеспечивает пользователя всеми необходимыми инструментами для решения прикладных задач.

Особое внимание следует уделить одному из типов серверов - файловому серверу (File Server). В распространенной терминологии для него принято сокращенное название- файл-сервер .

Файл-сервер хранит данные пользователей сети и обеспечивает им доступ к этим данным. Это компьютер с большой емкостью оперативной памяти, жесткими дисками большой емкости и дополнительными накопителями на магнитной ленте (стриммерами).

Он работает под управлением специальной операционной системы, которая обеспечивает одновременный доступ пользователей сети к расположенным на нем данным,

Файл-сервер выполняет следующие функции: хранение данных, архивирование данных, синхронизацию изменений данных различными пользователями, передачу данных.

Для многих задач использование одного файл-сервера оказывается недостаточным. Тогда в сеть могут включаться несколько серверов. Возможно также применение в качестве файл-серверов мини-ЭВМ.

Управление взаимодействием устройств в сети

Информационные системы, построенные на базе компьютерных сетей, обеспечивают решение следующих задач: хранение данных, обработка данных, организация доступа пользователей к данным, передача данных и результатов обработки данных пользователям.

В системах централизованной обработки эти функции выполняла центральная ЭВМ (Mainframe, Host).

Компьютерные сети реализуют распределенную обработку данных. Обработка данных в этом случае распределена между двумя объектами: клиентом и сервером.

Клиент - задача, рабочая станция или пользователь компьютерной сети.

В процессе обработки данных клиент может сформировать запрос на сервер для выполнения сложных процедур, чтение файла, поиск информации в базе данных и т. д.

Сервер, определенный ранее, выполняет запрос, поступивший от клиента. Результаты выполнения запроса передаются клиенту. Сервер обеспечивает хранение данных общего пользования, организует доступ к этим данным и передает данные клиенту,

Клиент обрабатывает полученные данные и представляет результаты обработки в виде, удобном для пользователя. В принципе обработка данных может быть выполнена и на сервере. Для подобных систем приняты термины - системы клиент-сервер или архитектура клиент-сервер.

Архитектура клиент-сервер может использоваться как в одноранговых локальных вычислительных сетях, так и в сети с выделенным сервером.

Одноранговая сеть . В такой сети нет единого центра управления взаимодействием рабочих станций и нет единого устройства для хранения данных. Сетевая операционная система распределена по всем рабочим станциям. Каждая станция сети может выполнять функции как клиента, так и сервера. Она может обслуживать запросы от других рабочих станций и направлять свои запросы на обслуживание в сеть.

Пользователю сети доступны все устройства, подключенные к другим станциям (диски, принтеры).

Достоинства одноранговых сетей: низкая стоимость и высокая надежность.

Недостатки одноранговых сетей:

  • зависимость эффективности работы сети от количества станций;
  • сложность управления сетью;
  • сложность обеспечения защиты информации;
  • трудности обновления и изменения программного обеспечения станций.

Наибольшей популярностью пользуются одноранговые сети на базе сетевых операционных систем LANtastic, NetWare Lite.

Сеть с выделенным сервером . В сети с выделенным сервером один из компьютеров выполняет функции хранения данных, предназначенных для использования всеми рабочими станциями, управления взаимодействием между рабочими станциями и ряд сервисных функций.

Такой компьютер обычно называют сервером сети. На нем устанавливается сетевая операционная система, к нему подключаются все разделяемые внешние устройства - жесткие диски, принтеры и модемы.

Взаимодействие между рабочими станциями в сети, как правило, осуществляется через сервер. Логическая организация такой сети может быть представлена топологией звезда. Роль центрального устройства выполняет сервер. В сетях с централизованным управлением существует возможность обмена информацией между рабочими станциями, минуя файл-сервер. Для этого можно использовать программу NetLink. После запуска программы на двух рабочих станциях можно передавать файлы с диска одной станции на диск другой (аналогично операции копирования файлов из одного каталога в другой с помощью программы Norton Commander).

Достоинства сети с выделенным сервером:

  • надежная система защиты информации;
  • высокое быстродействие;
  • отсутствие ограничений на число рабочих станций;
  • простота управления по сравнению с одноранговыми сетями,

Недостатки сети:

  • высокая стоимость из-за выделения одного компьютера под сервер;
  • зависимость быстродействия и надежности сети от сервера;
  • меньшая гибкость по сравнению с одноранговой сетью.

Сети с выделенным сервером являются наиболее распространенными у пользователей компьютерных сетей. Сетевые операционные системы для таких сетей - LANServer (IBM), Windows NT Server версий 3.51 и 4.0 и NetWare (Novell).

ТИПОВЫЕ ТОПОЛОГИИ И МЕТОДЫ ДОСТУПА ЛВС

Физическая передающая среда ЛВС

Физическая среда обеспечивает перенос информации между абонентами вычислительной сети. Как уже упоминалось, физическая передающая среда ЛВС представлена тремя типами кабелей: витая пара проводов, коаксиальный кабель, оптоволоконный кабель.

Витая пара состоит из двух изолированных проводов, свитых между собой (рис. 6.19). Скручивание проводов уменьшает влияние внешних электромагнитных полей на передаваемые сигналы. Самый простой вариант витой пары - телефонный кабель, Витые пары имеют различные характеристики, определяемые размерами, изоляцией и шагом скручивания. Дешевизна этого вида передающей среды делает ее достаточно популярной для ЛВС.

Рис. 6.19. Витая пара проводов

Основной недостаток витой пары - плохая помехозащищенность и низкая скорость передачи информации - 0,25 - 1 Мбит/с. Технологические усовершенствования позволяют повысить скорость передачи и помехозащищенность (экранированная витая пара), но при этом возрастает стоимость этого типа передающей среды.

Коаксиальный кабель (рис. 6.20) по сравнению с витой парой обладает более высокой механической прочностью, помехозащищенностью и обеспечивает скорость передачи информации до 10 - 50 Мбит/с, Для промышленного использования выпускаются два типа коаксиальных кабелей: толстый и тонкий. Толстый кабель более прочен и передает сигналы нужной амплитуды на большее расстояние, чем тонкий. В то же время тонкий кабель значительно дешевле. Коаксиальный кабель так же, как и витая пара, является одним из популярных типов передающей среды для ЛВС.

Рис. 6.20 . Коаксиальный кабель

Рис. 6.21. Оптоволоконный кабель

Оптоволоконный кабель - идеальная передающая среда (рис. 6.21). Он не подвержен действию электромагнитных полей и сам практически не имеет излучения. Последнее свойство позволяет использовать его в сетях, требующих повышенной секретности информации.

Скорость передачи информации по оптоволоконному кабелю более 50 Мбит/с, По сравнению с предыдущими типами передающей среды он более дорог, менее технологичен в эксплуатации.

ЛВС, выпускаемые различными фирмами, либо рассчитаны на один из типов передающей среды, либо могут быть реализованы в различных вариантах, на базе различных передающих сред.

Основные топологии ЛВС

Вычислительные машины, входящие в состав ЛВС, могут быть расположены самым случайным образом на территории, где создается вычислительная сеть. Следует заметить, что для способа обращения к передающей среде и методов управления сетью небезразлично, как расположены абонентские ЭВМ. Поэтому имеет смысл говорить о топологии ЛВС.

Топология ЛВС - это усредненная геометрическая схема соединений узлов сети.

Топологии вычислительных сетей могут быть самыми различными, но для локальных вычислительных сетей типичными являются всего три: кольцевая, шинная, звездообразная.

Иногда для упрощения используют термины - кольцо, шина и звезда. Не следует думать, что рассматриваемые типы топологий представляют собой идеальное кольцо, идеальную прямую или звезду.

Любую компьютерную сеть можно рассматривать как совокупность узлов.

Узел - любое устройство, непосредственно подключенное к передающей среде сети.

Топология усредняет схему соединений узлов сети. Так, и эллипс, и замкнутая кривая, и замкнутая ломаная линия относятся к кольцевой топологии, а незамкнутая ломаная линия-к шинной.

Кольцевая топология предусматривает соединение узлов сети замкнутой кривой - кабелем передающей среды (рис. 6.22). Выход одного узла сети соединяется со входом другого. Информация по кольцу передается от узла к узлу. Каждый промежуточный узел между передатчиком и приемником ретранслирует посланное сообщение. Принимающий узел распознает и получает только адресованные ему сообщения.

Рис. 6.22. Сеть кольцевой топологии

Кольцевая топология является идеальной для сетей, занимающих сравнительно небольшое пространство. В ней отсутствует центральный узел, что повышает надежность сети. Ретрансляция информации позволяет использовать в качестве передающей среды любые типы кабелей.

Последовательная дисциплина обслуживания узлов такой сети снижает ее быстродействие, а выход из строя одного из узлов нарушает целостность кольца и требует принятия специальных мер для сохранения тракта передачи информации.

Шинная топология - одна из наиболее простых (рис. 6.23). Она связана с использованием в качестве передающей среды коаксиального кабеля. Данные от передающего узла сети распространяются по шине в обе стороны. Промежуточные узлы не транслируют поступающих сообщений. Информация поступает на все узлы, но принимает сообщение только тот, которому оно адресовано. Дисциплина обслуживания параллельная.


Рис. 6.23. Сеть шинной топологии

Это обеспечивает высокое быстродействие ЛВС с шинной топологией. Сеть легко наращивать и конфигурировать, а также адаптировать к различным системам Сеть шинной топологии устойчива к возможным неисправностям отдельных узлов.

Сети шинной топологии наиболее распространены в настоящее время. Следует отметить, что они имеют малую протяженность и не позволяют использовать различные типы кабеля в пределах одной сети.

Звездообразная топология (рис. 6.24) базируется на концепции центрального узла, к которому подключаются периферийные узлы. Каждый периферийный узел имеет свою отдельную линию связи с центральным узлом. Вся информация передается через центральный узел, который ретранслирует, переключает и маршрутизирует информационные потоки в сети.

Рис. 6.24. Сеть звездообразной топологии

Звездообразная топология значительно упрощает взаимодействие узлов ЛВС друг с другом, позволяет использовать более простые сетевые адаптеры. В то же время работоспособность ЛВС со звездообразной топологией целиком зависит от центрального узла.

В реальных вычислительных сетях могут использоваться более сложные топологии, представляющие в некоторых случаях сочетания рассмотренных.

Выбор той или иной топологии определяется областью применения ЛВС, географическим расположением ее узлов и размерностью сети в целом.

Методы доступа к передающей среде

Передающая среда является общим ресурсом для всех узлов сети. Чтобы получить возможность доступа к этому ресурсу из узла сети, необходимы специальные механизмы - методы доступа.

Метод доступа к передающей среде - метод, обеспечивающий выполнение совокупности правил, по которым узлы сети получают доступ к ресурсу.

Существуют два основных класса методов доступа: детерминированные, недетерминированные.

При детерминированных методах доступа передающая среда распределяется между узлами с помощью специального механизма управления, гарантирующего передачу данных узла в течение некоторого, достаточно малого интервала времени.

Наиболее распространенными детерминированными методами доступа являются метод опроса и метод передачи права. Метод опроса рассматривался ранее. Он используется преимущественно в сетях звездообразной топологии.

Метод передачи права применяется в сетях с кольцевой топологией. Он основан на передаче по сети специального сообщения - маркера.

Маркер - служебное сообщение определенного формата, в которое абоненты сети могут помещать свои информационные пакеты.

Маркер циркулирует по кольцу, и любой узел, имеющий данные для передачи, помещает их в свободный маркер, устанавливает признак занятости маркера и передает его по кольцу. Узел, которому было адресовано сообщение, принимает его, устанавливает признак подтверждения приема информации и отправляет маркер в кольцо.

Передающий узел, получив подтверждение, освобождает маркер и отправляет его в сеть. Существуют методы доступа, использующие несколько маркеров.

Недетерминированные - случайные методы доступа предусматривают конкуренцию всех узлов сети за право передачи. Возможны одновременные попытки передачи со стороны нескольких узлов, в результате чего возникают коллизии.

Наиболее распространенным недетерминированным методом доступа является множественный метод доступа с контролем несущей частоты и обнаружением коллизий (CSMA/CD). В сущности, это описанный ранее режим соперничества. Контроль несущей частоты заключается в том, что узел, желающий передать сообщение, "прослушивает" передающую среду, ожидая ее освобождения. Если среда свободна, узел начинает передачу.

Следует отметить, что топология сети, метод доступа к передающей среде и метод передачи тесным образом связаны друг с другом. Определяющим компонентом является топология сети.

Назначение ЛВС

Локальные вычислительные сети за последнее пятилетие получили широкое распространение в самых различных областях науки, техники и производства.

Особенно широко ЛВС применяются при разработке коллективных проектов, например сложных программных комплексов. На базе ЛВС можно создавать системы автоматизированного проектирования. Это позволяет реализовывать новые технологии проектирования изделий машиностроения, радиоэлектроники и вычислительной техники. В условиях развития рыночной экономики появляется возможность создавать конкурентоспособную продукцию, быстро модернизировать ее, обеспечивая реализацию экономической стратегии предприятия.

ЛВС позволяют также реализовывать новые информационные технологии в системах организационно-экономического управления.

В учебных лабораториях университетов ЛВС позволяют повысить качество обучения и внедрять современные интеллектуальные технологии обучения.

ОБЪЕДИНЕНИЕ ЛВС

Причины объединения ЛВС

Созданная на определенном этапе развития системы ЛВС с течением времени перестает удовлетворять потребности всех пользователей, и тогда встает проблема расширения ее функциональных возможностей. Может возникнуть необходимость объединения внутри фирмы различных ЛВС, появившихся в различных ее отделах и филиалах в разное время, хотя бы для организации обмена данными с другими системами. Проблема расширения конфигурации сети может быть решена как в пределах ограниченного пространства, так и с выходом во внешнюю среду.

Стремление получить выход на определенные информационные ресурсы может потребовать подключения ЛВС к сетям более высокого уровня.

В самом простом варианте объединение ЛВС необходимо для расширения сети в целом, но технические возможности существующей сети исчерпаны, новых абонентов подключить к ней нельзя. Можно только создать еще одну ЛВС и объединить ее с уже существующей, воспользовавшись одним из ниже перечисленных способов.

Способы объединения ЛВС

Мост. Самый простой вариант объединения ЛВС - объединение одинаковых сетей в пределах ограниченного пространства. Физическая передающая среда накладывает ограничения на длину сетевого кабеля. В пределах допустимой длины строится отрезок сети - сетевой сегмент. Для объединения сетевых сегментов используются мосты.

Мост - устройство, соединяющее две сети, использующие одинаковые методы передачи данных.

Сети, которые объединяет моет, должны иметь одинаковые сетевые уровни модели взаимодействия открытых систем, нижние уровни могут иметь некоторые отличия.

Для сети персональных компьютеров мост - отдельная ЭВМ со специальным программным обеспечением и дополнительной аппаратурой. Мост может соединять сети разных топологий, но работающие под управлением однотипных сетевых операционных систем.

Мосты могут быть локальными и удаленными.

  • Локальные мосты соединяют сети, расположенные на ограниченной территории в пределах уже существующей системы.
  • Удаленные мосты соединяют сети, разнесенные территориально, с использованием внешних каналов связи и модемов.

Локальные мосты, в свою очередь, разделяются на внутренние и внешние.

  • Внутренние мосты обычно располагаются на одной из ЭВМ данной сети и совмещают функцию моста с функцией абонентской ЭВМ, Расширение функций осуществляется путем установки дополнительной сетевой платы.
  • Внешние мосты предусматривают использование для выполнения своих функций отдельной ЭВМ со специальным программным обеспечением.

Маршрутизатор (роутер). Сеть сложной конфигурации, представляющая собой соединение нескольких сетей, нуждается в специальном устройстве. Задача этого устройства - отправить сообщение адресату в нужную сеть. Называется такое устройство маршрутизamором.

Маршрутизатор, или роутер , - устройство, соединяющее сети разного типа, но использующее одну операционную систему.

Маршрутизатор выполняет свои функции на сетевом уровне, поэтому он зависит от протоколов обмена данными, но не зависит от типа сети. С помощью двух адресов - адреса сети и адреса узла маршрутизатор однозначно выбирает определенную станцию сети.

Пример 6.7. Необходимо установить связь с абонентом телефонной сети, находящимся в другом городе. Сначала набирается адрес телефонной сети этого города - код города. Затем - адрес узла этой сети - телефонный номер абонента. Функции маршрутизатора выполняет аппаратура АТС.

Маршрутизатор также может выбрать наилучший путь для передачи сообщения абоненту сети, фильтрует информацию, проходящую через него, направляя в одну из сетей только ту информацию, которая ей адресована.

Кроме того, маршрутизатор обеспечивает балансировку нагрузки в сети, перенаправляя потоки сообщений по свободным каналам связи.

Шлюз. Для объединения ЛВС совершенно различных типов, работающих по существенно отличающимся друг от друга протоколам, предусмотрены специальные устройства - шлюзы.

Шлюз - устройство, позволяющее организовать обмен данными между двумя сетями, использующими различные протоколы взаимодействия.

Шлюз осуществляет свои функции на уровнях выше сетевого. Он не зависит от используемой передающей среды, но зависит от используемых протоколов обмена данными. Обычно шлюз выполняет преобразование между двумя протоколами.

С помощью шлюзов можно подключить локальную вычислительную сеть к главному компьютеру, а также локальную сеть подключить к глобальной.

Пример 6.8. Необходимо объединить локальные сети, находящиеся в разных городах. Эту задачу можно решить с помощью глобальной сети передачи данных. Такой сетью является сеть коммутации пакетов на базе протокола Х.25. С помощью шлюза локальная вычислительная сеть подключается к сети Х.25. Шлюз выполняет необходимые преобразования протоколов и обеспечивает обмен данными между сетями.

Мосты, маршрутизаторы и даже шлюзы конструктивно выполняются в виде плат, которые устанавливаются в компьютерах. Функции свои они могут выполнять как в режиме полного выделения функций, так и в режиме совмещения их с функциями рабочей станции вычислительной сети.

В список сетевого оборудования ЛВС входят моноканалы (другие названия - сегменты, стволы), представляющие собой физические линии передачи данных; сетевые контроллеры (адаптеры, сетевые карты), управляющие доступом к каналу связи; приемопередатчики, служащие для связи сетевого контроллера с моноканалом; блоки взаимодействия данной сети (или подсети) с другими сетями (подсетями); терминаторы - устройства согласования сопротивлений на концах моноканалов для исключения искажающих отражений сигналов; концентраторы (Hubs) - коммутирующие устройства в сетях звездной архитектуры; концентраторы оконечных систем - для подключения нескольких ООД; коннекторы - для механического и непосредственного электрического подключения узлов к кабелю.

В качестве линий передачи данных в ЛВС используют коаксиальный кабель, витую (скрученную) пару проводов, волоконно-оптический кабель. Длины используемых отрезков коаксиального кабеля не должны превышать нескольких сотен метров, а у витой пары проводов - десятков метров. При больших расстояниях в среду передачи данных включают формирователи сигналов - повторители для сопряжения отрезков. Волоконно-оптический кабель позволяет существенно увеличить расстояния и скорость передачи данных.

Рассмотрим примеры построения приемопередатчиков и сетевых контроллеров ЛВС. Рис. 4.2. Приемопередатчик в шинной сети

Приемопередатчик ПП (transiver) - устройство для электрического соединения АКД с линией передачи данных. В состав приемопередатчика (рис. 4.2) в магистральных ЛВС с методом МДКН/ОК входят:

- приемник сигналов от линии передачи данных; его назначение - усиление информационных сигналов и обнаружение конфликтов путем выделения постоянной составляющей искаженных сигналов и ее сопоставления в компараторе с эталонным напряжением;

- передатчик от станции в линию; обычно реализуется в виде токового переключателя или балансной схемы на насыщенных транзисторах с трансформаторным выходом;

- ответвитель для подсоединения входов приемника и выходов передатчика к кабелю; применяется механическое контактирующее устройство, накладываемое на кабель и имеющее винт-иглу, которой прокалывается оплетка кабеля и осуществляется контакт с центральным проводником; игольчатый контакт имеет трансформаторную связь с приемником и передатчиком сигналов;

- защита от шума для отключения ООД от кабеля, если ООД ошибочно генерирует сигналы дольше, чем это предусмотрено.

В кольцевых локальных сетях сигналы циркулируют по кольцу, состоящему из ряда отрезков линии связи, соединяющих пары соседних узлов. Эти отрезки соединяются в узлах через посредство повторителей сигналов, выполняющих функции приема и передачи сигналов как из кольца и в кольцо, так и между АКД и линией. Повторители вносят некоторую задержку в передачу сигналов, поэтому общая задержка зависит от числа станций, включенных в кольцо.

Одним из способов взаимосвязи линии и АКД является способ вставки регистра. Станция, получившая полномочия, называется активной станцией . Активная станция осуществляет вставку регистра в разрыв кольца и подключает передающий регистр, из которого в кольцо посылается передаваемый кадр.

Эти регистры являются сдвигающими. Кадр проходит через кольцо и возвращается на вставленный регистр. По пути его адресная часть проверяется остальными станциями, поскольку в них предусмотрена расшифровка адресной и управляющей информации. Если пакет предназначен данной станции, то принимается информационная часть пакета, проверяется правильность приема и при положительном результате проверки в кольцо направляется соответствующее подтверждение. Передающая (активная) станция одновременно с передачей сформированного в ней пакета принимает пакет, прошедший по кольцу, на вставленный регистр. В каждом такте сдвига в кольцо направляется очередной бит данных, а из кольца с некоторой задержкой возвращаются переданные биты. Если подтверждена правильность передачи, то переданные данные стираются в передающей станции, которая направляет в кольцо свободный маркер, если не подтверждена, то осуществляется повторная передача пакета.

Станции, готовые к передаче собственных данных, ждут прихода свободного маркера. Станция, получившая полномочия, вставляет свой регистр в кольцо, становясь активной, а вставленный ранее регистр исключается из кольца.

Приемопередатчик (повторитель) для волоконно-оптических линий передачи данных (световодов) также включает части приемную, передающую, чтения и записи данных. В приемной части имеются фотодиод, усилитель-формирователь сигналов с требуемыми уровнями напряжения, механическое контактирующее устройство для надежного контакта фотодиода со стеклянной оболочкой кабеля. Передатчик представлен светодиодом или микролазером.

Сетевой контроллер (адаптер) - устройство для связи ООД со средой передачи данных. Блок доступа к каналу называется также средством уровня МАС и реализует принятый метод доступа. Так, в случае метода МДКН/ОК в блоке реализуются действия по выработке сигнала затора, задержке в передаче при наличии конфликта или при занятом моноканале, формированию данных в кадры, кодированию (декодированию) электрических сигналов в (из) манчестерский код, распознаванию адреса в передаваемых по сети сообщениях.

Формирование собственных информационных кадров включает операции по разделению сообщения на кадры и добавлению к информационным байтам служебной информации в соответствии с используемым протоколом. Обычно в служебную информацию входят адрес получателя (возможно также и отправителя), контрольный код для проверки правильности передачи, флаги - признаки начала и конца кадра. После образования информационного кадра станция должна получить полномочия. Для этого она прослушивает канал в ожидании маркера. После получения полномочий происходит преобразование параллельного кода в последовательный, преобразование в манчестерский код и передача сигналов в кабель.

В случае кольцевых маркерных ЛВС к функциям МАС-подуровня относятся: опознание адреса; генерация контрольного кода при передаче и его проверка при приеме; опознание маркера; контроль предельного времени отсутствия маркера, что требуется для принятия заключения о потере маркера и, следовательно, о его восстановлении; распаковка кадра и т.п.

Локальные вычислительные сети являются важным звеном единой информационно-телекоммуникационной системы предприятий и организаций. Понятие локальности в этом случае означает, что основная часть взаимодействия в сети происходит между ПK, территориально незначительно удаленными друг от друга и принадлежащими одной организационной структуре, а нередко и решающими специализированные функциональные задачи в этом подразделении.

Локальная вычислительная сеть - аппаратно-программные и информационные ресурсы, организованные в пределах ограниченной территории и объединенные каналами связи для информационного обмена между специалистами .

Применяемые ЛВС на предприятиях и организациях обеспечивают:

Универсальное сетевое пространство на основе открытых стандартов и технологий;

Функционирование общесистемных служб и сервисов, в том числе доступа к информации, сетевой печати и офисных приложений коллективной работы;

Функционирования специализированных прикладных программных средств;

Возможность прозрачной связи между любыми двумя ее узлами а также с существующими сетями;

Возможность удаленного диагностирования отдельных сегментов и ЛВС в целом.

Таким образом, организация ЛВС позволяет решать следующие задачи:

Обмен информацией между абонентами сети, что позволяет сократить бумажный документооборот и перейти к электронному документообороту;

Обеспечение распределенной обработки данных, связанное с объединением АРМ всех специалистов данной организации в сеть. Несмотря на существенные различия в характере и объеме расчетов, проводимых на АРМ специалистами различного профиля, используемая при этом информация в рамках одной организации находится в единой базе данных, поэтому объединение таких АРМ в сеть является целесообразным и эффективным ре­шением;

Поддержка принятия управленческих решений, предоставляющая руководителям и управленческому персоналу организации достоверную и оперативную информацию, необходимую для оценки ситуации и принятия правильных решений;

Организация собственных информационных систем, содержащих АБД;

Коллективное использование ресурсов, таких как сетевые принтеры, запоминающие устройства большой емкости, мощные средства обработки информации, прикладные программные системы, БД, базы знаний.

Локальные вычислительные сети можно классифицировать по разным признакам, представленным в табл. 4.1.

Таблица 4.1 Классификация локальных вычислительных сетей

Вид вычислительной сети Характеристика
1. По типу ПК, входящих в сеть
Гомогенные Сети, состоящие из программно совместимых ПК
Гетерогенные Сети, в состав которых входят программно несовместимые ПК
С коммутацией каналов Характеризуются установлением прямой связи с абонентом на некоторое время в пределах общей очереди. Основным недостатком такой связи является ожидание соединения в общей очереди. Положительным качеством такой передачи является тот факт, что передача не может быть осуществлена произвольно, что повышает достоверность передачи информации в целом
С коммутацией сообщений Характеризуются наличием узлов коммутации, которые получают сообщение, запоминают его и в случае освобождения канала связи с абонентом по определенному адресу передают это сообщение. Положительной стороной такой передачи является минимальное время ожидания, отрицательной то, что сеть получается более дорогой (необходимо иметь специальное ПО узла коммутации), а при передаче большого объема информации (1 млн байт) канал может быть занят несколько часов
С коммутацией пакетов Позволяют длинное сообщение на передающем пункте разбивать на пакеты сообщений, которые затем передаются. Положительная сторона такого способа передачи - сокращается время ожидания передачи, отрицательная - необходимость иметь ПО, позволяющее разбивать на передающем пункте сообщение на пакеты с заголовком, адресом и контрольным числом, а на принимающем пункте - сборку сообщения
3. По режиму передачи данных
Широковеща-тельные Характеризуются тем, что в каждый момент времени на передачу данных может работать только одна рабочая станция, а все остальные станции в это время работают на прием
Последовательные Характеризуются тем, что передача данных производится последовательно от одной станции к соседней, причем на разных участках сети могут использоваться различные виды физической передающей среды
4. По характеру реализуемых функций
Вычислительные Предназначены для решения задач управления на основе вычислительной обработки исходной информации
Информационные Предназначены для получения справочных данных по запросу пользователей
Смешанные Реализуют вычислительные и информационные функции
5. По способу управления
С централизован-ным управлением Вычислительная сеть, в которой все функции управления и координации выполняемых сетевых операций сосредоточены в одном или нескольких управляющих ПК
С децентрализован-ным управлением Вычислительная сеть, в которой каждый угол сети имеет полный набор программных средств для координации выполняемых сетевых операций.
Смешанные Вычислительные сети, в которых в определенном сочетании реализованы принципы централизованного и децентрализованного управления, например задачи с высшим приоритетом решаются под централизованным управлением, а остальные задачи - под децентрализованным.


Одной из первых была одноранговая или «безсерверная» организация построения локальной вычислительной сети (использующаяся и в настоящее время), которая допускает включение в нее как ПК различной мощности, так и терминалов ввода-вывода. Термин «одноранговая сеть» означает, что все рабочие станции локальной вычислительной сети имеют в ней одинаковые права, т.е в ней нет выделенного сервера. Каждый пользователь одноранговой сети может определить состав файлов, которые он предоставляет для общего использования (так называемые public files). Таким образом, пользователи одноранговой сети могут работать как со всеми своими файлами, так и с файлами, предоставляемыми другими ее пользователями на своих рабочих станциях. Подключение отдельных ПК в одноранговую сеть производится преимущественно высокочастотными коаксиальными кабельными линиями связи.

Создание одноранговой сети обеспечивает наряду с взаимообменом данными между включенными в нее ПК совместное использование части дискового пространства (через public files), а также совместную эксплуатацию периферийных устройств (например, принтеров). Существуют и другие возможности, например, когда одна из рабочих станций временно берет на себя функции «сервера», а остальные работают в режиме «клиентов». Последнее широко используется в различного рода обучающих системах. Достоинствами одноранговых ЛВС являются также: относительная простота их установки и эксплуатации, умеренная стоимость, возможность развития (например, по числу включенных в них рабочих станций), независимость выполняемых вычислительных и других процессов для каждой включенной в сеть рабочей станции.

Получившие наибольшее распространение иерархические или серверные ЛВС включают следующие основные компоненты -рабочие станции, серверы, сетевые адаптеры, повторители и концентраторы, мосты и коммутаторы, маршрутизаторы, шлюзы, каналы связи, сетевую операционную систему.

1. Рабочая станция - это персональный компьютер, подключенный к вычислительной сети, через который пользователь получает доступ к сетевым ресурсам. Рабочая станция функционирует как в сетевом, так и в локальном режиме и обеспечивает пользователя всем необходимым инструментарием для решения прикладных задач.

2. Сервер - это компьютер, выполняющий функции управления сетевыми ресурсами общего доступа: осуществляет хранение данных, управляет базами данных, выполняет удаленную обработку заданий, обеспечивает печать заданий и др. Выделяют следующие виды серверов:

- универсальный сервер для выполнения определенного набора различных задач в ЛВС, например, для предоставления рабочим станциям доступ к общесетевым ресурсам, распределяющий эти ресурсы и т.д.;

- сервер приложений для выполнения прикладных процессов. С одной стороны, взаимодействует с клиентами, получая задания а с другой - работает с базами данных, выбирая информацию, необходимую для обработки, и т.д.;

- сервер баз данных для создания и управления базами данных. Как правило, является автоматизированным банком данных в ИТ;

- файловый сервер обеспечивает функционирование распределенных ресурсов, включая файлы и программное обеспечение;

- сервер удаленного доступа обеспечивает сотрудникам, работающим вне предприятия (дома, в удаленных филиалах, командировочным), возможность работать с информационными ресурсами сети;

- телефонный сервер для организации локальной сети службы телефонии. Этот сервер выполняет функции речевой почты, автоматического распределения вызовов, учет стоимости телефонных разговоров, интерфейса с внешней телефонной сетью. Наряду с телефонией сервер также может передавать изображения и сообщения факсимильной связи;

- архивационный сервер для резервного копирования и архивирования информации в крупных многосерверных вычислительных сетях. Такой сервер обычно выполняет ежедневное автоматическое архивирование со сжатием информации, поступающей от серверов и рабочих станций;

- коммуникационный сервер для организации связи персональных компьютеров, удаленно расположенных пользовательских устройств - принтеров, плоттеров, кассовых аппаратов и т.д. по каналам вычислительных сетей местного или удаленного доступа;

- терминальный сервер объединяет группу терминалов и упрощает переключения при их перемещении;

- прокси-сервер (proxy-сервер) обеспечивает подключение рабочих станций локальной сети к глобальной сети Internet;

- Web-сервер предназначен для работы с web -ресурсами глобальной сети Internet;

- сервер печати для эффективного использования сетевых принтеров;

- сервер телеконференций имеет систему автоматической обработки видеоизображений и организации видеовзаимодействия в глобальной сети;

- видеосервер снабжает пользователей видеоматериалами, обучающими программами, видеоиграми, обеспечивает электронный маркетинг. Имеет высокую производительность и объемную па мять;

- почтовый сервер для организации функционирования электронной почты;

- сервер защиты данных содержит широкий набор средств обеспечения безопасности данных и, в первую очередь, идентификации паролей и т.д.

Для повышения производительности, надежности, отказоустойчивости технических решений в информационных технологиях практикуется объединение серверов в группы (домены), которые работают под управлением сетевой операционной системы. При этом ресурсы и нагрузки распределяются между серверами, что увеличивает эффективность функционирования локальной вычислительной сети.

Группирование серверов в домены дает два важных преимущества сетевым администраторам и специалистам предприятия. Наиболее важное - серверы домена формируют единый административный блок, совместно использующий службу безопасности и информацию учетных записей пользователей (рис. 4.1).

Рис. 4.1. Организация домена в ЛВС

Каждый домен имеет одну базу данных, содержащую учетные записи специалиста и групп пользователей, а также установочные параметры политики безопасности. Все серверы домена функционируют либо как первичный контроллер домена, либо как резервный контроллер домена, содержащий копию этой базы данных.

Контроллер - специализированный процессор, предназначенный для управления внешними устройствами, и, таким образом, освобождения центрального процессора от выполнения этих функций.

Это означает, что администраторам нужно управлять только одной учетной записью для каждого специалиста, который должен использовать пароль только одной учетной записи.

Второе преимущество доменов сделано для удобства пользователей. Когда пользователи просматривают сеть в поисках доступных ресурсов, они видят сеть, сгруппированную в домены, а не разбросанные по всей сети серверы.

3. Сетевой адаптер (сетевая карта) представляет собой устройство сопряжения для подключения персональных компьютеров к сети. Он относится к периферийным устройствам ПК, непосредственно взаимодействующим со средой передачи данных, которая прямо или через другое коммуникационное оборудование связывает его с другими компьютерами.

Сетевые адаптеры вместе с сетевым программным обеспечением способны распознавать и обрабатывать ошибки, которые могут возникнуть из-за электрических помех, коллизий или плохой работы оборудования.

4. Повторители и концентраторы. Основная функция повторителя (repeater), как это следует из его названия, - повторение сигналов, поступающих на его порт. Повторитель улучшает электрические ха­рактеристики сигналов и их синхронность, и за счет этого появляется возможность увеличивать общую длину кабеля между самыми удаленными в сети узлами.

Многопортовый повторитель часто называют концентратором (concentrator) или хабом (hub), что отражает тот факт, что данное устройство реализует не только функцию повторения сигналов, но и концентрирует в одном центральном устройстве функции объединения компьютеров в сеть. Практически во всех современных сетевых стандартах концентратор является необходимым элементом сети, соединяющим отдельные компьютеры в сеть.

Концентратор может выполнять следующие дополнительные функции:

Объединение сегментов сети с различными физическими средами в единый логический сегмент;

Автосегментация портов - автоматическое отключение порта при его некорректном поведении (повреждение кабеля, интенсивная генерация пакетов ошибочной длины и т.п.);

Поддержка между концентраторами резервных связей, которые используются при отказе основных;

Защита передаваемых по сети данных от несанкционированно доступа (например, путем искажения поля данных в кадрах повторяемых на портах, не содержащих компьютера с адрес назначения) и др.

5. Мосты и коммутаторы делят общую среду передачи данных на логические сегменты.

Логический сегмент образуется путем объединения нескольких физических сегментов (отрезков кабеля) с помощью одного или нескольких концентраторов. Каждый логический сегмент подключается к отдельному порту моста или коммутатора, который является многопортовым и многопроцессорным мостом, обрабатывающие кадры со скоростью, значительно превышающей скорость работы моста.

При поступлении кадра на какой-либо из портов мост или коммутатор повторяет этот кадр, но не на всех портах, как это делает концентратор, а только на том порту, к которому подключен сегмент, содержащий компьютер-адресат.

Основное отличие мостов и коммутаторов состоит в том, что мост обрабатывает кадры последовательно (один за другим), а коммутатор - параллельно (одновременно между всеми парами своих портов).

6. Маршрутизатор представляет собой ретрансляционную систему, соединяющую две коммуникационные сети либо их части. Маршрутизатор обменивается информацией об изменениях структуры сетей, трафике и их состоянии. Благодаря этому, выбирается оптимальный маршрут следования блока данных в разных вычислительных сетях от абонентской системы-отправителя к системе-получателю. Маршрутизаторы обеспечивают также соединение административно независимых коммуникационных сетей.

7. Шлюз является наиболее сложной ретрансляционной системой, обеспечивающей взаимодействие сетей с различными наборами протоколов всех семи уровней модели открытых систем.

Шлюзы оперируют на верхних уровнях модели OSI (сеансовом, представительском и прикладном) и представляют наиболее развитый метод подсоединения сетевых сегментов и компьютерных сетей. Необходимость в сетевых шлюзах возникает при объединении двух систем, имеющих различную архитектуру, так как в этом случае требуется полностью переводить весь поток данных, проходящих между двумя системами.

В качестве шлюза обычно используется выделенный персональный компьютер, на котором функционирует программное обеспечение шлюза и производятся преобразования, позволяющие взаимодействовать нескольким системам в сети.

8. Каналы связи позволяют быстро и надежно передавать информацию между различными устройствами локальной вычислительной сети.

Выделяют следующие виды каналов связи, представленные на рис. 4.2.

Рис. 4.2. Каналы связи, используемые в ЛВС

Кабельные технологии организации каналов связи .

Витая пара состоит из 8 изолированных проводов, свитых по два между собой. Скручивание проводов уменьшает влияние внешних электромагнитных полей на передаваемые сигналы. Витые пары имеют различные характеристики, определяемые размерами, изоляцией и шагом скручивания. Невысокая стоимость и небольшая масса этого вида передающей среды делает ее достаточно популярной для ЛВС. Основные недостатки витой пары - плохая помехозащищенность, низкая скорость передачи информации, простота несанкционированного подключения, ограничения на количество станций в сети. Технологические усовершенствования позволяют повысить скорость передачи и помехозащищенность (экранированная витая пара), но при этом возрастает стоимость этого типа передающей среды.

Коаксиальный кабель представляет собой многожильный кабель с хорошей изоляцией. По сравнению с витой парой он обладает высокой механической прочностью, помехозащищенностью и более высокой скоростью передачи информации. Для промышленного использования выпускаются два типа коаксиальных кабелей: толстый и тонкий. Толстый кабель более прочен и передает сигналы нужной амплитуды на большее расстояние, чем тонкий. В то же время тонкий кабель значительно дешевле.

Оптоволоконный кабель состоит из световодов, выполненных из высококачественного стеклянного (пластикового) волокна диаметром несколько микрон, окруженного твердым заполнителем и сверу защищенного специальной оболочкой. Имеет высокую скорость передачи информации, не подвержен действию электромагнитных полей, полностью пожаро- и взрывобезопасен, не имеет излучения Последнее свойство позволяет использовать его в сетях, требующих повышенной секретности информации. По сравнению с предыдущими типами передающей среды он имеет следующие недостатки - высокая стоимость, сложность технологии сращивания кабеля, необходимость иметь дополнительное оборудование (модемы) для преобразования световых сигналов в электрические и т.д.

Беспроводные технологии организации каналов связи

Радиосреда в ЛВС в настоящее время получает широкое распространение за счет внедрения так называемой технологии беспроводных сетей Wi-Fi, Bluetooth, WiMAX. Главное достоинство радиоканала - отсутствие кабеля, за счет чего возможно обслуживать мобильные рабочие станции.

Передача данных в микроволновом диапазоне использует высокие частоты и применяется как на коротких, так и на больших расстояниях. Главное ограничение заключается в том, чтобы передатчик и приемник были в зоне прямой видимости. Применяются в местах, где использование проводных технологий затруднено.

Лазерная передача осуществляется при помощи узкого пучка света, генерируемого лазером. Система работает на более высоких частотах, чем микроволновая передача, и является более узконаправленной. В качестве излучателей используют лазеры, а в качестве приемников - фотодиоды. Лазерная передача сильно зависит от атмосферных явлений и работает на коротких расстояниях в условиях прямой видимости.

Инфракрасные технологии функционируют на очень высоких частотах, приближающихся к частотам видимого света. Они могут быть использованы для установления двусторонней или широковещательной передачи на близких расстояниях. При инфракрасной связи обычно используют светодиоды для передачи инфракрасных волн приемнику. Инфракрасная передача ограничена малым расстоянием в прямой зоне видимости.

9. Сетевая операционная система (СОС) наряду с аппаратной частью играет важную роль в организации локальной вычислительной сети.

Сетевая операционная система необходима для управления потоками сообщений между рабочими станциями и сервером. Она предоставляет разнообразные виды сетевых служб и поддерживает работу прикладных процессов, реализуемых в сетях.

Одной из характеристик ЛВС является топология (или архитектура вычеслительной сети, под которой понимается схема (архитектура) сети, отображающая физическое расположение узлов и соединений между ними.

Чаше всего в ЛВС используется одна из трех топологий: шинная, кольцевая, звездообразная.

Большинство других топологий являются производными от перечисленных. К ним относятся: древовидная, иерархическая, полносвязная, гибридная. Топология усредняет схему соединений рабочих станций. Так, например, и эллипс, и замкнутая линия относятся к кольцевой топологии, а незамкнутая ломаная линия - к шинной.

Шинная топология основана на использовании кабеля, к которому подключены рабочие станции. Кабель шины зачастую прокладывается в фальшпотолках здания. Для повышения надежности вместе с основным кабелем прокладывают и запасной, на который переключаются станции в случае неисправности основного (рис. 4.3, а).

Кольцевая топология характеризуется тем, что рабочие станции последовательно соединяются друг с другом, образуя замкнутую линию. Выход одного узла сети соединяется со входом другого (рис. 4.3, б).

Звездообразная топология основывается на концепции центрального узла (сервера или пассивного соединителя), к которому подключаются рабочие станции сети (рис. 4.3, в).

Древовидная топология представляет собой более развитый вариант шинной топологии. Дерево образуют путем соединения нескольких шин. Ее используют, чтобы соединить сетью несколько этажей в здании или несколько зданий, расположенных на одной территории (рис. 4.3, г).

Полносвязная топология является наиболее сложной и дорогой. Она характеризуется тем, что каждый узел сети связан со всеми другими рабочими станциями. Эта топология применяется достаточно редко, в основном там, где требуется высокая надежность и скорость передачи информации (рис. 4.3, д).

На практике чаще встречаются гибридные топологии ЛВС, которые приспособлены к требованиям конкретного заказчика и сочетают фрагменты шинной, звездообразной или других топологий Рис.4.3,е).

Рис. 4.3. Схемы построения топологических структур ЛВС

Одним из важнейших вопросов, решаемых при организации ЛВС, является не только выбор топологии сети и способа соединения персональных компьютеров в единый вычислительный комплекс, но и организация метода доступа к информации в ЛВС, под которым понимается набор правил, определяющий использование канала передачи данных, соединяющего узлы сети.

По способу получения доступа к среде передачи методы доступа можно разделить на два класса - детерминированные и недетерминированные.

Детерминированный метод доступа. Среда передачи распределяется между узлами сети с помощью механизма управления, который обеспечивает некоторый интервал времени для передачи данных каждому узлу.

Наиболее распространенным детерминированным методом доступа является метод передачи права, который характеризуется передачей по сети с кольцевой логической топологией служебного сообщения - маркера. Получение узлом сети маркера предоставляет ему право на доступ к среде передачи данных. При наличии нуждающихся в передаче данных выполняется их доставка адресату, после чего маркер передается следующему по очереди устройству. На время прохождения данных маркер в сети отсутствует, остальные станции не имеют возможности передачи, таким образом появляется возможность избежать коллизии. При отсутствии информации, нуждающейся в отправке, маркер сразу переходит к следующему узлу сети. Для обработки возможных ошибок, в результате которых маркер может быть утерян, существует механизм его регенерации. К детерминированным методам доступа относятся методы доступа Arcnet и Token Ring.

Коллизия (collision) - искажение передаваемых данных в ЛВС, которое появляется при попытке одновременной передачи несколькими сетевыми устройствами.

Метод доступа Arcnet (Attached resource computer Network) был разработан Datapoint Corporation в 1977 г. Используется в основном в ЛВС, имеющей центральный узел (компьютер или пассивный соединитель), к которому через концентратор подключены все ПК сети, при этом организуется логическое кольцо, по которому передается маркер. Устройство, получившее маркер, имеет право на передачу порции данных в канал. Принимает данные то устройство, чей адрес указан в блоке данных. Каждому подключенному устройству присваивается номер. Последовательность обхода маркера определяется номерами устройств.

Метод доступа Token Ring был запатентован фирмой IBM в 1981 г. и основан на передаче маркера по физическому кольцу. Рабочая станция, владеющая маркером, имеет право передать по определенному конечному адресу информацию, при этом передаваемый блок данных добавляется (цепляется) к маркеру. Маркер последовательно передается от одной станции к другой. Передаваемый блок данных принимает то устройство, которому он адресован. После принятия данных, устройство делает пометку о приеме и отправляет с маркером дальше по кольцу. Узел сети, который передавал данные, получив пометку о приеме, удаляет блок данных из кольца. Достоинством технологии Token Ring является большая устойчивость к высоким нагрузкам на канал, относительно стабильное время доступа к каналу, недостатком - повышенная сложность и стоимость.

Развитием технологии Token Ring применительно к оптоволоконному кольцу является технология FDDI (Fiber Distributed Interface - распределенный волоконный интерфейс данных), которая строится на основе двух оптоволоконных кабелей, образующих основной и резервный (первичное и вторичное кольцо) пути передачи данных между узлами сети, как правило, кольцевой топологии.

Именно наличие двух колец стало основным способом повышения отказоустойчивости в сети FDDL. Узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного кольца, а вторичное кольцо в этом режиме не используется. В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, вновь образуя единое кольцо.

Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении, а по вторичному - в обратном. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними рабочими станциями ЛВС.

Недетерминированный (случайный) метод доступа . Узел сети пытается получить доступ к среде передачи только в тот момент времени, когда это необходимо. Если среда занята, то узел повторяет попытку доступа до тех пор, пока очередная попытка не окажется успешной.

Наиболее распространенным недетерминированным методом доступа является множественный доступ с контролем несущей и обнаружением коллизий (Carrier Sense Multiple Access/Collision Detection 4 CSMA/CD). Этот метод основан на контроле несущей в линии передачи данных и устранении конфликтов, возникающих из-за попыток одновременного начала передачи двумя или более станциями, путем повторения попыток захвата линии через случайный отрезок времени. К недетерминированному методу доступа относится метод доступа Ethernet.

Метод доступа Ethernet является самым распространенным в ЛВС. Свое название он получил от первой ЛВС, разработанной фирмой Xerox в 1972 г. Впоследствии вокруг проекта Ethernet объединились фирмы DEC, Intel и Xerox. В 1982 г. эта сеть была принята в качестве стандарта.

Метод доступа Ethernet использует магистральный высокоскоростной моноканал, организованный в виде общей шины. Каждая станция, имеющая данные для передачи, отслеживает состояние канала (прослушивает канал). Если канал свободен, станция передает блок данных в канал. Если одновременно две станции начали передачу данных, происходит столкновение передач (конфликт, коллизия). В этом случае через случайный интервал времени происходит попытка новой передачи данных каждым из узлов сети. Ethernet может использоваться в сетях с шинной или звездообразной топологией. Во втором случае общая шина реализуется внутри концентратора. Обычная скорость передачи 10 и 100 Мбит/с.

В настоящее время в больших локальных вычислительных сетях для оптимизации доступа к информации используется технология виртуализации (виртуальный - мнимый), на основе которой организуются виртуальные локальные вычислительные сети.

Виртуальная ЛВС (Virtual LAN ) - логическое объединение узлов большой локальной вычислительной сети, которые могут принадлежать к ее различным физическим сегментам, подключенным к разным концентраторам.

Виртуальные ЛВС полностью ликвидируют физические барьеры на пути формирования рабочих групп специалистов в масштабе сети более высокого уровня, но особенно это актуально в масштабе корпоративной вычислительной сети (КВС), поскольку реализуется возможность объединения физически рассредоточенных сотрудников компании в группы пользователей с сохранением целостности связи внутри их групп. При этом обеспечивается высокая организационная гибкость в управлении предприятиями и организациями. Технология виртуальных ЛВС позволяет сетевым администраторам группировать разных пользователей КВС, совместно использующих одни и те же сетевые ресурсы. Разбиение КВС на логические сегменты, каждый из которых представляет собой виртуальную ЛВС, предоставляет существенные преимущества в администрировании сети, обеспечении безопасности информации, в управлении широковещательными передачами из виртуальной сети по магистрали корпоративной сети.

Виртуальная ЛВС создается при помощи коммутирующих концентраторов или маршрутизаторов. Специальное программное обеспечение системы управления позволяет разделить сеть на несколько логических частей (виртуальных сегментов). Администратор сети может по своему усмотрению создавать виртуальные сегменты, добавлять в них или удалять отдельные узлы. Данные, предназначенные для конкретных узлов виртуальной сети, благодаря коммутации пакетов передаются только в рамках заданного логического сегмента. Этим предотвращаются перегрузки в локальных вычислительных сетях и обеспечивается повышение их безопасности.

Технология виртуальных ЛВС позволяет упростить процесс создания независимых сетей, которые затем должны связываться с помощью протоколов сетевого уровня.

При использовании технологии виртуальных сетей в комутатоpax одновременно решаются две задачи:

1. Повышение производительности в каждой из виртуальных сетей, так как коммутатор передает кадры в такой сети только узлу назначения.

2. Изоляция сетей друг от друга для управления правами доступа пользователей и создания защитных барьеров.

Метод создания виртуальных ЛВС используется в сетях типа Ethernet. Принцип логического объединения узлов разнородных сетей (в том числе Token Ring и др.) в виртуальные сегменты используется также в распределенных и глобальных сетях.

Кроме традиционных проводных ЛВС в настоящее время широкое распространение получила технология беспроводных сетей - WI-FI (от Wireless Fidelity - высокая точность беспроводной передачи данных) - это современная беспроводная технология соединения компьютеров в локальную сеть и подключения их к Internet. Под аббревиатурой Wi-Fi в настоящее время развивается целое семейство стандартов передачи цифровых потоков данных по радиоканалам.

Основными элементами сетей Wi-Fi являются:

- Wi-Fi-adanmep - служит для подключения компьютера пользователя к беспроводной сети и выполняет ту же функцию, что и сетевая карта в проводной сети;

- точка доступа представляет собой автономный модуль со встроенным микрокомпьютером и приемно-передающим устройством. Через точку доступа осуществляется взаимодействие и обмен информацией между беспроводными адаптерами, а также связь с проводным сегментом сети;

- зона обслуживания (Service Set - SS ) - это логически сгруппированные устройства, обеспечивающие подключение к беспроводной сети;

- базовая зона обслуживания (Basic Service Set - BSS) - это группа станций, которые связываются друг с другом по беспроводной связи.

Технология Wi-Fi использует метод множественного доступа с контролем несущей и предотвращением коллизий {Carrier Sense Multiple Access with Collision Avoidance - CSMA/CA). Вместо прямого распознавания коллизий по методу CSMA/CD здесь используется их косвенное выявление. Для этого каждый переданный кадр должен подтверждаться кадром приема, посылаемым станцией назначения. Если же по истечении оговоренного тайм-аута кадр приема не поступает, станция-отправитель считает, что произошла коллизия.

Беспроводные сети Wi-Fi поддерживают несколько различных режимов работы, реализуемых для конкретных целей.

Режим Ad Нос («точка-точка») характеризуется тем, что клиенты устанавливают связь непосредственно друг с другом через Wi-Fi~ адаптер. Таким образом организуется одноранговая сеть, в которой компьютеры взаимодействуют напрямую без применения точек доступа. При этом создается только одна зона обслуживания, не имеющая интерфейса для подключения к проводной локальной сети. Режим Ad Hoc позволяет устанавливать соединение на скорости не более 11 Мбит/с, независимо от используемого оборудования. Дальность связи составляет не более ста метров, а скорость передачи данных быстро падает с увеличением расстояния (рис. 4.4. а).

Рис. 4.4. Основные режимы работы беспроводной сети Wi-Fi

Инфраструктурный режим характеризуется тем, что связь ПК обеспечивается через точку доступа. Точку доступа в этом случае можно рассматривать как беспроводной коммутатор. Клиентские станции не связываются непосредственно одна с другой, а связываются с точкой доступа, и она уже направляет пакеты адресатам. Точка доступа, как правило, имеет порт Ethernet, через который базовая зона обслуживания подключается к проводной или смешанной сети, т.е. к сетевой инфраструктуре (рис. 4.4, б).

Режим распределенной беспроводной системы WDS (Wireless Distribution System) позволяет организовать мостовую связь между точками доступа и подключить клиентские ПК, при этом каждая точка может соединяться с несколькими другими точками. Подключение клиентов может осуществляться как по проводной сети через uplink -порты точек, так и по принципу инфраструктурного режима беспроводного доступа.

Uplink-порт - это порт, который предназначен для подключения к другим коммутаторам, но может и использоваться как обычный порт для подключения оконечного оборудования .

Данная технология поддерживается большинством современных точек доступа (рис. 4.4, в).

Дальнейшим развитием беспроводной связи стала технология WiMAX, основанная на стандарте IEEE 802.16 (Institute Electrical and Electronics Engineers - Институт инженеров по электротехнике и paдиоэлектронике ИИЭР США), который разработан на электронную технику, включая компьютерные сети и их элементы.

WiMAX (англ. Worldwide Interoperability for Microwave Access) - телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов).

Название «WiMAX» было создано WiMAXForum - организацией, которая была основана в июне 2001 г. с целью продвижения и развития технологии WiMAX, предоставляющей высокоскоростной беспроводной доступ к сети, альтернативный выделенным линиям и DSL (англ. Digital Subscriber Line - цифровая абонентская линия).

WiMAX подходит для решения следующих задач:

Соединение точек доступа Wi-Fi друг с другом и другими сегментами Internet;

Обеспечение беспроводного широкополосного доступа как альтернативы выделенным линиям и DSL;

Предоставление высокоскоростных сервисов передачи данных и телекоммуникационных услуг;

Создание точек доступа, не привязанных к географическому положению.

WiMAX позволяет осуществлять доступ в Internet на высоких скоростях, с гораздо большим покрытием, чем у Wi-Fi-сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL и выделенные линии, а также локальные сети. В результате подобный подход позволяет создавать маштабируемые высокоскоростные сети в рамках целых городов (рис. 4.5).

Рис. 4.5. Вариант организации технологии WiMAX

Основное различие двух технологий состоит в том, что Фиксированный WiMAX позволяет обслуживать только «статичных» абонентов, а мобильный ориентирован на работу с пользователями, передвигающимися со скоростью до 120 км/ч. Мобильность означает наличие функций роуминга и «бесшовного» переключения между базовыми станциями при передвижении абонента (как происходит в сетях сотовой связи). В частном случае мобильный WiMAX может применяться и для обслуживания фиксированных пользователей.

Покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры). Несмотря на такие расстояния, подобные сети всё равно относят к локальным.

Здесь же следует упомянуть о таких важнейших понятиях, как абонент, сервер, клиент.

Абонент (узел, хост, станция) - это устройство, подключенное к сети и активно участвующее в информационном обмене. Чаще всего абонентом (узлом) сети является компьютер, но абонентом также может быть, например, сетевой принтер или другое периферийное устройство, имеющее возможность напрямую подключаться к сети. Далее в курсе вместо термина "абонент" для простоты будет использоваться термин "компьютер".

Сервером называется абонент (узел) сети, который предоставляет свои ресурсы другим абонентам, но сам не использует их ресурсы. Таким образом, он обслуживает сеть. Серверов в сети может быть несколько, и совсем не обязательно, что сервер - самый мощный компьютер. Выделенный (dedicated) сервер - это сервер, занимающийся только сетевыми задачами. Невыделенный сервер может помимо обслуживания сети выполнять и другие задачи. Специфический тип сервера - это сетевой принтер.

Клиентом называется абонент сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает, то есть сеть его обслуживает, а он ей только пользуется. Компьютер-клиент также часто называют рабочей станцией. В принципе каждый компьютер может быть одновременно как клиентом, так и сервером. Под сервером и клиентом часто понимают также не сами компьютеры, а работающие на них программные приложения. В этом случае то приложение, которое только отдает ресурс в сеть, является сервером, а то приложение, которое только пользуется сетевыми ресурсами - клиентом.

Задачи ЛС

Локальные сети позволяют отдельным пользователям легко и быстро взаимодействовать друг с другом. Вот лишь некоторые задачи, которые позволяет выполнять ЛС:

  • совместная работа с документами;
  • упрощение документооборота: вы получаете возможность просматривать, корректировать и комментировать документы не покидая своего рабочего места, не организовывая собраний и совещаний, отнимающих много времени;
  • сохранение и архивирование своей работы на сервере, чтобы не использовать ценное пространство на жестком диске ПК;
  • простой доступ к приложениям на сервере;
  • облегчение совместного использования в организациях дорогостоящих ресурсов, таких как принтеры, накопители CD-ROM, жесткие диски и приложения (например, текстовые процессоры или программное обеспечение баз данных);

Компоненты локальной сети

Базовые компоненты и технологии, связанные с архитектурой локальных сетей, могут включать в себя:

Аппаратное обеспечение:

  • Кабели;
  • Серверы;
  • Сетевые интерфейсные платы (NIC, Network Interface Card);
  • Концентраторы;
  • Серверы удаленного доступа;

Программное обеспечение:

  • Сетевое ПО управления

Немного истории компьютерной связи

Связь на небольшие расстояния в компьютерной технике существовала еще задолго до появления первых персональных компьютеров.

К большим компьютерам (mainframes), присоединялись многочисленные терминалы (или "интеллектуальные дисплеи"). Правда, интеллекта в этих терминалах было очень мало, практически никакой обработки информации они не делали, и основная цель организации связи состояла в том, чтобы разделить интеллект ("машинное время") большого мощного и дорогого компьютера между пользователями, работающими за этими терминалами. Это называлось режимом разделения времени, так как большой компьютер последовательно во времени решал задачи множества пользователей. В данном случае достигалось совместное использование самых дорогих в то время ресурсов - вычислительных (рис. 1.1).

Рис. 1.1. Подключение терминалов к центральному компьютеру

Затем были созданы микропроцессоры и первые микрокомпьютеры. Появилась возможность разместить компьютер на столе у каждого пользователя, так как вычислительные, интеллектуальные ресурсы подешевели. Но зато все остальные ресурсы оставались еще довольно дорогими. А что значит голый интеллект без средств хранения информации и ее документирования? Не будешь же каждый раз после включения питания заново набирать выполняемую программу или хранить ее в маловместительной постоянной памяти. На помощь снова пришли средства связи. Объединив несколько микрокомпьютеров, можно было организовать совместное использование ими компьютерной периферии (магнитных дисков, магнитной ленты, принтеров). При этом вся обработка информации проводилась на месте, но ее результаты передавались на централизованные ресурсы. Здесь опять же совместно использовалось самое дорогое, что есть в системе, но уже совершенно по-новому. Такой режим получил название режима обратного разделения времени (рис. 1.2). Как и в первом случае, средства связи снижали стоимость компьютерной системы в целом.

Рис. 1.2. Объединение в сеть первых микрокомпьютеров

Затем появились персональные компьютеры, которые отличались от первых микрокомпьютеров тем, что имели полный комплект достаточно развитой для полностью автономной работы периферии: магнитные диски, принтеры, не говоря уже о более совершенных средствах интерфейса пользователя (мониторы, клавиатуры, мыши и т.д.). Периферия подешевела и стала по цене вполне сравнимой с компьютером. Казалось бы, зачем теперь соединять персональные компьютеры (рис. 1.3)? Что им разделять, когда и так уже все разделено и находится на столе у каждого пользователя? Интеллекта на месте хватает, периферии тоже. Что же может дать сеть в этом случае?

Рис. 1.3. Объединение в сеть персональных компьютеров

Самое главное - это опять же совместное использование ресурса. То самое обратное разделение времени, но уже на принципиально другом уровне. Здесь уже оно применяется не для снижения стоимости системы, а с целью более эффективного использования ресурсов, имеющихся в распоряжении компьютеров. Например, сеть позволяет объединить объем дисков всех компьютеров, обеспечив доступ каждого из них к дискам всех остальных как к собственным.

Но нагляднее всего преимущества сети проявляются в том случае, когда все пользователи активно работают с единой базой данных, запрашивая информацию из нее и занося в нее новую (например, в банке, в магазине, на складе). Никакими дискетами тут уже не обойдешься: пришлось бы целыми днями переносить данные с каждого компьютера на все остальные, содержать целый штат курьеров. А с сетью все очень просто: любые изменения данных, произведенные с любого компьютера, тут же становятся видными и доступными всем. В этом случае особой обработки на месте обычно не требуется, и в принципе можно было бы обойтись более дешевыми терминалами (вернуться к первой рассмотренной ситуации), но персональные компьютеры имеют несравнимо более удобный интерфейс пользователя, облегчающий работу персонала. К тому же возможность сложной обработки информации на месте часто может заметно уменьшить объем передаваемых данных.

Рис. 1.4. Использование локальной сети для организации совместной работы компьютеров

Без сети также невозможно обойтись в том случае, когда необходимо обеспечить согласованную работу нескольких компьютеров. Эта ситуация чаще всего встречается, когда эти компьютеры используются не для вычислений и работы с базами данных, а в задачах управления, измерения, контроля, там, где компьютер сопрягается с теми или иными внешними устройствами (рис. 1.4). Примерами могут служить различные производственные технологические системы, а также системы управления научными установками и комплексами. Здесь сеть позволяет синхронизировать действия компьютеров, распараллелить и соответственно ускорить процесс обработки данных, то есть сложить уже не только периферийные ресурсы, но и интеллектуальную мощь.

Именно указанные преимущества локальных сетей и обеспечивают их популярность и все более широкое применение, несмотря на все неудобства, связанные с их установкой и эксплуатацией.

Топология локальных сетей

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.

Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий, их достоинствах и недостатках надо.

Факторы , влияющие на физическую работоспособность сети и непосредственно связанные с понятием топология.

1)Исправность компьютеров (абонентов) , подключенных к сети. В некоторых случаях поломка абонента может заблокировать работу всей сети. Иногда неисправность абонента не влияет на работу сети в целом, не мешает остальным абонентам обмениваться информацией.

2)Исправность сетевого оборудования , то есть технических средств, непосредственно подключенных к сети (адаптеры, трансиверы, разъемы и т.д.). Выход из строя сетевого оборудования одного из абонентов может сказаться на всей сети, но может нарушить обмен только с одним абонентом.

3)Целостность кабеля сети . При обрыве кабеля сети (например, из-за механических воздействий) может нарушиться обмен информацией во всей сети или в одной из ее частей. Для электрических кабелей столь же критично короткое замыкание в кабеле.

4)Ограничение длины кабеля , связанное с затуханием распространяющегося по нему сигнала. Как известно, в любой среде при распространении сигнал ослабляется (затухает). И чем большее расстояние проходит сигнал, тем больше он затухает (рис. 1.8). Необходимо следить, чтобы длина кабеля сети не была больше предельной длины Lпр, при превышении которой затухание становится уже неприемлемым (принимающий абонент не распознает ослабевший сигнал).

Рис. 1.8. Затухание сигнала при распространении по сети

Существует три базовые топологии сети:

Шина (bus) - все компьютеры параллельно подключаются к одной линии связи. Информация от каждого компьютера одновременно передается всем остальным компьютерам (рис. 1.5).

Рис. 1.5. Сетевая топология шина

Топология шина (или, как ее еще называют, общая шина) самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов по доступу к сети. Компьютеры в шине могут передавать информацию только по очереди, так как линия связи в данном случае единственная. Если несколько компьютеров будут передавать информацию одновременно, она исказится в результате наложения (конфликта, коллизии). В шине всегда реализуется режим так называемого полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно).

В топологии шина отсутствует явно выраженный центральный абонент, через который передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система). Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями.

Поскольку центральный абонент отсутствует, разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента. В связи с этим сетевая аппаратура при топологии шина сложнее, чем при других топологиях. Тем не менее из-за широкого распространения сетей с топологией шина (прежде всего наиболее популярной сети Ethernet) стоимость сетевого оборудования не слишком высока.

Рис. 1.9. Обрыв кабеля в сети с топологией шина

Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен.

Казалось бы, при обрыве кабеля получаются две вполне работоспособные шины (рис. 1.9). Однако надо учитывать, что из-за особенностей распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных согласующих устройств, терминаторов, показанных на рис. 1.5 и 1.9 в виде прямоугольников. Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. В случае разрыва или повреждения кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть.

Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи. Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования.

Если принять, что сигнал в кабеле сети ослабляется до предельно допустимого уровня на длине Lпр, то полная длина шины не может превышать величины Lпр. В этом смысле шина обеспечивает наименьшую длину по сравнению с другими базовыми топологиями.

Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителей сигналов - репитеров или повторителей (на рис. 1.10 показано соединение двух сегментов, предельная длина сети в этом случае возрастает до 2 Lпр, так как каждый из сегментов может быть длиной Lпр). Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи.

Рис. 1.10. Соединение сегментов сети типа шина с помощью репитера

Звезда (star) - к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи (рис. 1.6). Информация от периферийного компьютера передается только центральному компьютеру, от центрального - одному или нескольким периферийным.

Рис. 1.6. Сетевая топология звезда

Звезда - это единственная топология сети с явно выделенным центром, к которому подключаются все остальные абоненты. Обмен информацией идет исключительно через центральный компьютер, на который ложится большая нагрузка, поэтому ничем другим, кроме сети, он, как правило, заниматься не может. Понятно, что сетевое оборудование центрального абонента должно быть существенно более сложным, чем оборудование периферийных абонентов. О равноправии всех абонентов (как в шине) в данном случае говорить не приходится. Обычно центральный компьютер самый мощный, именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано.

Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. В связи с этим должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры.

Обрыв кабеля или короткое замыкание в нем при топологии звезда нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

В отличие от шины, в звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. Чаще всего для их соединения используется две линии связи, каждая из которых передает информацию в одном направлении, то есть на каждой линии связи имеется только один приемник и один передатчик. Это так называемая передача точка-точка. Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных, внешних терминаторов.

Проблема затухания сигналов в линии связи также решается в звезде проще, чем в случае шины, ведь каждый приемник всегда получает сигнал одного уровня. Предельная длина сети с топологией звезда может быть вдвое больше, чем в шине (то есть 2 Lпр), так как каждый из кабелей, соединяющий центр с периферийным абонентом, может иметь длину Lпр.

Серьезный недостаток топологии звезда состоит в жестком ограничении количества абонентов. Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов. В этих пределах подключение новых абонентов довольно просто, но за ними оно просто невозможно. В звезде допустимо подключение вместо периферийного еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).

Звезда, показанная на рис. 1.6, носит название активной или истинной звезды. Существует также топология, называемая пассивной звездой, которая только внешне похожа на звезду (рис. 1.11). В настоящее время она распространена гораздо более широко, чем активная звезда. Достаточно сказать, что она используется в наиболее популярной сегодня сети Ethernet.

В центре сети с данной топологией помещается не компьютер, а специальное устройство - концентратор или, как его еще называют, хаб (hub), которое выполняет ту же функцию, что и репитер, то есть восстанавливает приходящие сигналы и пересылает их во все другие линии связи.

Рис. 1.11. Топология пассивная звезда и ее эквивалентная схема

Получается, что хотя схема прокладки кабелей подобна истинной или активной звезде, фактически речь идет о шинной топологии, так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а никакого центрального абонента не существует. Безусловно, пассивная звезда дороже обычной шины, так как в этом случае требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды, в частности, упрощает обслуживание и ремонт сети. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную звезду, которая считается малоперспективной топологией.

Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом, однако сам в обмене не участвует (так сделано в сети 100VG-AnyLAN).

Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шинной топологии), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях, расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 1.5), то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем при топологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

Кольцо (ring) - компьютеры последовательно объединены в кольцо. Передача информации в кольце всегда производится только в одном направлении. Каждый из компьютеров передает информацию только одному компьютеру, следующему в цепочке за ним, а получает информацию только от предыдущего в цепочке компьютера (рис. 1.7).

Рис. 1.7. Сетевая топология кольцо

Кольцо - это топология, в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник (связь типа точка-точка). Это позволяет отказаться от применения внешних терминаторов.

Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, то есть выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Если предельная длина кабеля, ограниченная затуханием, составляет Lпр, то суммарная длина кольца может достигать NLпр, где N - количество компьютеров в кольце. Полный размер сети в пределе будет NLпр/2, так как кольцо придется сложить вдвое. На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI). Кольцо в этом отношении существенно превосходит любые другие топологии.

Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен.

Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Ведь один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на кольцо. В таких методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в кольцо выполняется достаточно просто, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае шины, максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно обладает высокой устойчивостью к перегрузкам, обеспечивает уверенную работу с большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды), который может быть перегружен большими потоками информации.

Рис. 1.12. Сеть с двумя кольцами

Сигнал в кольце проходит последовательно через все компьютеры сети, поэтому выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу сети в целом. Это существенный недостаток кольца.

Точно так же обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Из трех рассмотренных топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому в случае топологии кольца обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве.

Иногда сеть с топологией кольцо выполняется на основе двух параллельных кольцевых линий связи, передающих информацию в противоположных направлениях (рис. 1.12). Цель подобного решения - увеличение (в идеале - вдвое) скорости передачи информации по сети. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).

В случае звездно-кольцевой (star-ring) топологии в кольцо объединяются не сами компьютеры, а специальные концентраторы (изображенные на рис. 1.16 в виде прямоугольников), к которым в свою очередь подключаются компьютеры с помощью звездообразных двойных линий связи. В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов линии связи образуют замкнутый контур (как показано на рис. 1.16). Данная топология дает возможность комбинировать преимущества звездной и кольцевой топологий. Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети. Если говорить о распространении информации, данная топология равноценна классическому кольцу.

В заключение надо также сказать о сеточной топологии (mesh), при которой компьютеры связываются между собой не одной, а многими линиями связи, образующими сетку (рис. 1.17).

Рис. 1.17. Сеточная топология: полная (а) и частичная (б)

В полной сеточной топологии каждый компьютер напрямую связан со всеми остальными компьютерами. В этом случае при увеличении числа компьютеров резко возрастает количество линий связи. Кроме того, любое изменение в конфигурации сети требует внесения изменений в сетевую аппаратуру всех компьютеров, поэтому полная сеточная топология не получила широкого распространения.

Частичная сеточная топология предполагает прямые связи только для самых активных компьютеров, передающих максимальные объемы информации. Остальные компьютеры соединяются через промежуточные узлы. Сеточная топология позволяет выбирать маршрут для доставки информации от абонента к абоненту, обходя неисправные участки. С одной стороны, это увеличивает надежность сети, с другой же – требует существенного усложнения сетевой аппаратуры, которая должна выбирать маршрут.