Содержание лития в аккумуляторе. Реакции на положительном электроде

В современных мобильных телефонах, ноутбуках, планшетах используются литий─ионные аккумуляторы. Постепенно они вытеснили щелочные аккумуляторы с рынка портативной электроники. Раньше во всех этих устройствах использовались никель─кадмиевые и никель─металлгидридные аккумуляторные батареи. Но их времена прошли, поскольку Li─Ion батареи имеют лучшие характеристики. Правда, они могут заменить щелочные не по всем параметрам. Например, для них недостижимы токи, которые могут отдавать никель─кадмиевые АКБ. Для питания смартфонов и планшетов это некритично. Однако в области портативного электроинструмента, который потребляет большой ток, щелочные аккумуляторы по-прежнему в ходу. Тем менее, работы по разработке аккумуляторов с высокими токами разряда без кадмия продолжаются. Сегодня мы поговорим о литий─ионных аккумуляторных батареях, их устройстве, эксплуатации и перспективах развития.

Самые первые аккумуляторные элементы с анодом из лития были выпущены в семидесятых годах прошлого столетия. У них была высокая удельная энергоёмкость, что сразу сделало их востребованными. Специалисты давно стремились разработать источник на основе щелочного металла, который имеет высокую активность. Благодаря этому было достигнуто высокое напряжение этого типа батарей и удельная энергия. При этом сама разработка конструкции таких элементов была выполнена довольно быстро, а вот их практическое использование вызвало сложности. С ними удалось справиться только в 90-е годы прошлого века.


На протяжении этих 20 лет исследователи пришли к выводу, что основной проблемой является литиевый электрод. Этот металл очень активный и при эксплуатации протекал ряд процессов, приводивших в итоге к воспламенению. Это стали называть вентиляцией с образованием пламени. Из-за этого в начале 90-х годов производители были вынуждены отозвать батареи, выпущенные для мобильных телефонов.

Это случилось после ряда несчастных случаев. В момент разговора ток, потребляемый от аккумулятора, выходил на максимум и началась вентиляция с выбросом пламени. В результате произошло много случаев получения пользователями ожогов лица. Поэтому учёным пришлось дорабатывать конструкцию литий─ионных аккумуляторов.

Металлический литий крайне нестабилен, особенно проявляется при зарядке и разрядке. Поэтому исследователи стали создавать аккумуляторную батарею литиевого типа без использования лития. Стали использоваться ионы этого щелочного металла. Отсюда и пошло их название.

Литий─ионные батареи имеют меньшую удельную энергию, чем . Но они безопасны при соблюдении норм заряда и разряда.

Реакции, происходящие в Li─Ion аккумуляторе

Рывком в направлении внедрения литий─ионных аккумуляторных батарей в бытовую электронику стала разработка АКБ, у которых минусовой электрод был выполнен из углеродного материала. Кристаллическая решётка углерода очень хорошо подошла в качестве матрицы для интеркаляции ионов лития. Чтобы увеличить напряжение аккумулятора, положительный электрод был выполнен из оксида кобальта. Потенциал литерованного оксида кобальта составляет примерно 4 вольта.

Величина рабочего напряжения большинства литий─ионных аккумуляторов составляет 3 вольта и более. В процессе разряда на минусовом электроде происходит деинтеркаляция лития из углерода и его интеркаляция в оксид кобальта плюсового электрода. В процесс зарядки процессы происходят наоборот. Получается, что металлического лития в системе нет, а работают его ионы, которые перемещаются с одного электрода на другой, создавая электрический ток.

Реакции на отрицательном электроде

Все современные коммерческие модели литий─ионных аккумуляторов имеют минусовой электрод из углеродосодержащего материала. От природы этого материала, а также вещества электролита во многом зависит сложный процесс интеркаляции лития в углерод. Матрица углерод на аноде имеет слоистую структуру. Структура может быть упорядоченной (натуральный или синтетический графит) или частично упорядоченной (кокс, сажа и т. п.).

При интеркаляции ионы лития раздвигают слои углерода, внедряясь между них. Получаются различные интеркалаты. При интеркаляции и деинтеркаляции удельный объем матрицы углерода меняется несущественно. В отрицательный электрод, помимо углеродного материала, могут использоваться серебро, олово и их сплавы. Также пробуют использовать композитные материалы с кремнием, сульфидами олова, соединениями кобальта и т. п.

Реакции на положительном электроде

В первичных литиевых элементах (батарейках) для изготовления плюсового электрода часто используются самые разные материалы. В аккумуляторах этого сделать не получается и выбор материала ограничен. Поэтому плюсовой электрод Li─Ion аккумулятора выполняется из литированного оксида никеля или кобальта. Также могут применяться литий─марганцевые шпинели.

Сегодня ведутся исследования материалов из смешанных фосфатов или оксидов для катода. Как удалось доказать специалистам, такие материалы улучшают электрические характеристики литий─ионных АКБ. Также разрабатываются способы нанесения оксидов на поверхность катода.

Реакции, протекающие в литий─ионном аккумуляторе при заряде, можно описать следующими уравнениями:

положительный электрод

LiCoO 2 → Li 1-x CoO 2 + xLi + + xe —

отрицательный электрод

С + xLi + + xe — → CLi x

В процессе разряда реакции идут в обратном направлении.

На рисунке ниже схематично показаны процессы, протекающие в литий─ионном аккумуляторе при заряде и разряде.


Устройство литий─ионных аккумуляторов

По своему исполнению Li─Ion аккумуляторы выполняются в цилиндрическом и призматическом исполнении. Цилиндрическая конструкция представляет рулон электродов с сепараторным материалом для разделения электродов. Этот рулон помещён в корпус из алюминия или стали. С ним соединён минусовой электрод.

Положительный контакт выводится в виде контактной площадки на торец аккумулятора.

Li─Ion аккумуляторы призматической конструкции делаются с помощью укладывания пластин прямоугольной формы друг на друга. Такие батареи дают возможность сделать упаковку более плотной. Сложность заключается в поддержке сжимающего усилия на электродах. Есть призматические АКБ с рулонной сборкой электродов, скручиваемых в спираль.

В конструкции любых литий─ионных аккумулятор предусмотрены меры для обеспечения их безопасной работы. В первую очередь это касается предотвращения разогрева и воспламенения. Под крышкой батареи устанавливается механизм, который увеличивает сопротивление аккумулятора при увеличении температурного коэффициента. При возрастании давления внутри АКБ выше допустимого предела, механизм разрывает положительный вывод и катод.

Кроме того, для увеличения безопасности эксплуатации в Li-Ion аккумуляторах в обязательном порядке используется электронная плата. Её назначение – это контроль за процессами заряда и разряда, исключение перегрева и короткого замыкания.

Сейчас выпускается много призматических литий─ионных аккумуляторов. Они находят применение в смартфонах и планшетах. Конструкция призматических батарей часто может отличаться у различных производителей, поскольку не имеет единой унификации. Электроды противоположной полярности разделяются сепаратором. Для его производства используется пористый полипропилен.

Конструкция Li-Ion и прочих разновидностей литиевых АКБ всегда выполняется герметичной. Это обязательное требование, поскольку вытекания электролита не допустимо. Если он вытечет, то электроника будет повреждена. Кроме того, герметичное исполнение не допускает попадания внутрь АКБ воды и кислорода. Если они попадут внутрь, то в результате реакции с электролитом и электродами разрушат аккумулятор. Производство комплектующих для литиевых аккумуляторов и их сборка находится в специальных сухих боксах в атмосфере аргона. При этом используются сложные приёмы сваривания, герметизации и т. п.

Что касается количества активной массы Li-Ion аккумулятора, то здесь производители всегда ищут компромисс. Им нужно добиться максимальной ёмкости и обеспечить безопасность функционирования. За основу принимается отношение:

А о / А п = 1,1, где

А о – активная масса отрицательного электрода;

А п — активная масса положительного электрода.

Такой баланс не допускает образование лития (чистого металла) и исключает возгорание.

Параметры Li-Ion аккумуляторов

Выпускаемые сегодня литий─ионные аккумуляторы имеют высокую удельную энергоёмкость и рабочее напряжение. Последнее в большинстве случаев составляет от 3,5 до 3,7 вольта. Энергоёмкость составляет от 100 до 180 ватт-час на килограмм или от 250 до 400 на литр. Некоторое время назад производители не могли выпустить АКБ с ёмкостью выше нескольких ампер-час. Сейчас проблемы, сдерживающие развитие в этом направлении, устранены. Так, что в продаже стали встречаться аккумуляторы литиевого типа с ёмкостью в несколько сотен ампер-час.



Ток разряда современных Li─Ion аккумуляторов составляет от 2С до 20С. Они работают в интервале температур окружающей среды от -20 до +60 Цельсия. Есть модели работоспособные при -40 Цельсия. Но сразу стоит сказать, что при отрицательных температурах работают специальные серии АКБ. Обычные литий─ионные батарейки для мобильных телефонов при отрицательных температурах становятся неработоспособными.

Саморазряд этого типа батарей равен 4─6 процента в течение первого месяца. Далее он уменьшается и в год составляет до процентов. Это значительно меньше, чем у никель─кадмиевых и никель─металлогидридных батарей. Срок службы примерно 400─500 циклов заряд-разряд.

Теперь поговорим об особенностях эксплуатации литий─ионных аккумуляторов.

Эксплуатация литий─ионных батарей

Зарядка Li─Ion аккумуляторов

Заряд литий─ионных АКБ обычно комбинированный. Сначала они заряжаются при постоянном токе величиной 0,2─1С пока не наберут напряжение 4,1─4,2 вольта. А затем зарядка ведётся при постоянном напряжении. Первая ступень продолжается примерно около часа, а вторая около двух. Чтобы зарядить аккумулятор быстрее, используется импульсный режим. Первоначально выпускались Li─Ion аккумуляторы с графитом и для них устанавливалось ограничение напряжения 4,1 вольта на одну банку. Дело в том, что при более высоком напряжении в элементе начинались побочные реакции, сокращающие срок эксплуатации этих аккумуляторов.

Постепенно эти минусы удалось устранить за счёт легирования графита различными добавками. Современные литий─ионные элементы без проблем заряжают до 4,2 вольта. Погрешность составляет 0,05 вольта на элемент. Существуют группы Li─Ion аккумуляторных батарей для военной и промышленной сферы, где требуется повышенная надёжность и длительный срок службы. Для таких АКБ выдерживают максимальное напряжение на элемент 3,90 вольта. У них несколько ниже энергетическая плотность, но увеличенный срок службы.

Если заряжать литий─ионную батарею током величиной 1С, то время полного набора ёмкости составит 2─3 часа. Аккумулятор считается полностью заряженным, когда напряжение возрастает до максимального, а ток снижается до 3 процентов от величины в начале процесса зарядки. Это можно видеть на графике ниже.

На графике ниже представлены этапы зарядки Li─Ion батареи.



Процесс зарядки состоит из следующих этапов:

  • Этап 1. На этой стадии через аккумуляторную батарею течёт максимальный ток заряда. Он продолжается до момента достижения порогового напряжения;
  • Этап 2. При постоянном напряжении на АКБ ток зарядки постепенно уменьшается. Этот этап прекращается, когда величина тока уменьшается до 3 процентов от начального значения;
  • Этап 3. Если аккумулятор ставится на хранение, то на этом этапе идёт периодический заряд для компенсации саморазряда. Делается ориентировочно через каждые 500 часов.
    Из практики известно, что увеличение тока заряда не сокращает время зарядки батареи. При повышении тока напряжение растёт быстрее до порогового значения. Но тогда потом второй этап зарядки длится дольше. Некоторые зарядные устройства (ЗУ) могут зарядить Li─Ion аккумулятор за час. В таких ЗУ отсутствует второй этап, но реально аккумулятор в этой точке заряжается где-то на 70 процентов.

Что касается струйной подзарядки, то для литий─ионных батарей она неприменима. Это объясняется тем, что этот тип АКБ не может при перезарядке поглощать избыточную энергию. Струйная подзарядка может привести к переходу части ионов лития в металлическое состояние (валентность 0).

А непродолжительный заряд хорошо компенсирует саморазряд и потери электрической энергии. Зарядка на третьем этапе может делаться каждые 500 часов. Как правило, выполняется при снижении напряжения АКБ до 4,05 вольта на одном элементе. Заряд ведётся до поднятия напряжения до 4,2 вольта.

Стоит отметить слабую стойкость литий─ионных аккумуляторов к перезаряду. В результате подачи лишнего заряда на углеродной матрице (минусовой электрод) может начаться осаждение металлического лития. Он имеет очень высокую химическую активность и взаимодействует с электролитом. В результате на катоде начинается выделение кислорода, что грозит ростом давления в корпусе и разгерметизацией. Поэтому если вы заряжаете Li─Ion элемент в обход контроллера, не допускайте подъёма напряжения при заряде выше, чем рекомендует производитель батареи. Если постоянно перезаряжать аккумулятор, срок его службы сокращается.

Безопасности Li-Ion АКБ производители уделяют серьёзное внимание. Заряд прекращается при увеличении напряжения выше допустимого уровня. Также установлен механизм выключения заряда при увеличении температуры батареи выше 90 Цельсия. Некоторые современные модели батарей имеют в своей конструкции выключатель механического типа. Он срабатывает при росте давления внутри корпуса АКБ. Механизм контроля напряжения электронной платы отключает банку от внешнего мира по минимальному и максимальному напряжению.

Существуют литий─ионные батареи без защиты. Это модели, содержащие в своём составе марганец. Этот элемент при перезаряде способствует торможению металлизации лития и выделению кислорода. Поэтому в таких аккумуляторах защита становится не нужна.

Хранение и разрядные характеристики литий─ионных АКБ

Аккумуляторы литиевого типа хранятся достаточно хорошо и саморазряд в год составляет всего 10─20% в зависимости от условий хранения. Но при этом деградация элементов батареи продолжается даже, если она не используется. Вообще, все электрические параметры литий─ионного аккумулятора могут отличаться для каждого конкретного экземпляра.

К примеру, напряжение при разряде меняется в зависимости от степени зарядки, тока, температуры окружающей среды и т. п. На срок эксплуатации АКБ оказывают влияние токи и режимы цикла разряд-заряд, температура. Один из главных недостатков Li-Ion батарей ─ это чувствительность к режиму заряд-разряд, из-за чего в них и предусматривается много разных видов защит.

На графиках ниже представлены разрядные характеристики литий─ионных аккумуляторов. На них рассмотрена зависимость напряжения от тока разряда и температуры окружающей среды.



Как можно видеть, при увеличении разрядного тока падение ёмкости незначительно. Но при этом рабочее напряжение заметно уменьшается. Аналогичная картина наблюдается при температуре меньше 10 градусов Цельсия. Стоит также отметить начальную просадку напряжения аккумулятора.

Процессы зарядки разрядки любых аккумуляторных батарей протекают в виде химической реакции. Однако заряд литий-ионных аккумуляторов — это исключение из правил. Научные исследования показывают энергетику таких батарей как хаотичное перемещение ионов. Утверждения учёных мужей заслуживают внимания. Если по науке правильно заряжать литий-ионные аккумуляторы, тогда эти приборы должны служить вечно.

Подтверждённые практикой факты утраты полезной ёмкости АКБ учёные видят в ионах, блокируемых так называемыми ловушками.

Поэтому, как и в случае с другими подобными системами, литий-ионные приборы не застрахованы от дефектов в процессе их применения на практике.

Зарядные устройства для конструкций Li-ion имеют некоторое сходство с приборами, предназначенными для кислотно-свинцовых систем.

Но главные отличия таких зарядных устройств видятся в подаче завышенных напряжений на ячейки. К тому же отмечаются более жесткие допуски по токам, плюс исключение заряда прерывистым или плавающим способом при полной зарядке батареи.


Относительно мощный прибор питания, который может применяться в качестве накопителя энергии для конструкций альтернативных источников энергии

Если отличаются некоторой гибкостью, с точки зрения подключений/отключений напряжения, производители литий-ионных систем категорически отвергают такой подход.

Аккумуляторы Li-ion и правила эксплуатации этих приборов не допускают возможности безграничного превышения заряда.

Поэтому не существует для литий-ионных аккумуляторов так называемого «чудесного» зарядного устройства, способного продлить срок службы на длительное время.

Невозможно получить дополнительную емкость Li-ion за счёт импульсного заряда или прочих известных трюков. Литий-ионная энергетика — это своего рода «чистая» система, принимающая строго ограниченное количество энергии.

Зарядка кобальто-купажированных АКБ

Классические конструкции литий-ионных батарей оснащены катодами, структуру которых составляют материалы:

  • кобальт,
  • никель,
  • марганец,
  • алюминий.

Все они обычно заряжаются напряжением до 4,20В/я. Допускаемое отклонение составляет не более +/- 50 мВ/я. Но есть также отдельные виды литий-ионных аккумуляторов на основе никеля, которые допускают величину заряда напряжением до 4.10В/я.


Кобальт-купажированные литий-ионные аккумуляторные батареи оснащаются внутренними защитными цепями, но этот момент редко спасает от взрыва аккумулятора в режиме чрезмерного заряда

Также есть разработки литий-ионных АКБ, где увеличена процентная доля лития. Для них напряжение заряда может достигать значения 4,30В/я и выше.

Что же, увеличение напряжения увеличивает емкость, но выход напряжения за пределы спецификации чреват разрушением структуры АКБ.

Поэтому в массе своей литий-ионные аккумуляторы оснащаются защитными цепями, цель которых держать установленную норму.

Полный или частичный заряд

Однако практика показывает: большинство мощных литий-ионных АКБ могут принимать более высокий уровень напряжения при условии его кратковременной подачи.

При таком варианте эффективность зарядки составляет около 99%, а ячейка остается холодной в процессе всего времени заряда. Правда, некоторые литий-ионные батареи всё таки нагреваются на 4-5C при достижении полного заряда.

Возможно, это связано с защитой или объясняется высоким внутренним сопротивлением. Для таких АКБ следует останавливать заряд при росте температуры более 10ºC на умеренной норме заряда.


Литий-ионные батареи в зарядном устройстве на зарядке. Индикатор показывает полную зарядку аккумуляторов. Дальнейший процесс грозит повредить батареи

Полная зарядка кобальто-купажированных систем наступает с пороговым значением напряжения. При этом ток падает на величину до 3 -5% от номинала.

Аккумулятор будет показывать полный заряд и при достижении какого-то уровня ёмкости, остающегося неизменным в течение продолжительного времени. Причиной этому может стать повышенный саморазряд батареи.

Увеличение тока заряда и заряд насыщения

Следует отметить: увеличение тока заряда не ускоряет достижение состояния полного заряда. Литий- достигнет пика напряжения быстрее, но заряд до полного насыщения ёмкости требует больше времени. Тем не менее, зарядка аккумулятора большим током быстро увеличивает ёмкость батареи примерно до 70 %.

Литий-ионные аккумуляторы не поддерживают обязательной полной зарядки, как в случае с кислотно-свинцовыми приборами. Мало того, именно такой вариант зарядки нежелателен для Li-ion. Фактически, лучше зарядить АКБ не полностью, потому что высокое напряжение «напрягает» аккумулятор.

Выбор порога более низкого напряжения или полного съёма заряда насыщения способствуют продлению срока службы литий-ионной батареи. Правда, такой подход сопровождается уменьшением времени отдачи энергии АКБ.

Здесь следует отметить: зарядные устройства бытового назначения, как правило, работают на максимальной мощности и не поддерживают регулировки зарядного тока (напряжения).

Производители бытовых зарядных устройств для литий-ионных аккумуляторов считают продолжительный срок службы менее важным фактором, чем затраты на усложнение схемных решений.

Зарядные устройства литий-ионных батарей

Некоторые дешевые зарядные устройства бытового назначения часто работают по упрощенной методике. Заряжают литий-ионный аккумулятор в течение одного часа и менее, без перехода на заряд насыщения.

Индикатор готовности на таких устройствах загорается, когда батарея достигает порога напряжения на первом этапе. Состояние заряда при этом составляет около 85%, что нередко удовлетворяет многих пользователей.


Это зарядное устройство отечественного производства предлагается для работы с разными аккумуляторами, в том числе с литий-ионными АКБ. Аппарат имеет систему регуляции напряжения и тока, что уже хорошо

Зарядные устройства профессионального назначения (дорогостоящие) отличаются тем, что устанавливают порог зарядного напряжения ниже, тем самым продлевая срок службы литий-ионной батареи.

В таблице показаны расчетные мощности при заряде такими устройствами на разных пороговых значениях напряжения, с зарядом насыщения и без такового:

Напряжение заряда, В/на ячейку Ёмкость при отсечке высокого напряжения, % Время заряда, мин Ёмкость при полном насыщении, %
3.80 60 120 65
3.90 70 135 75
4.00 75 150 80
4.10 80 165 90
4.20 85 180 100

Как только литий-ионный аккумулятор начинает заряжаться, отмечается быстрый рост напряжения. Такое поведение сравнимо с подъёмом груза резиновой лентой, когда имеет место эффект отставания.

Емкость, в конечном итоге, будет набрана, когда аккумулятор полностью зарядится. Такая характеристика заряда типична для всех АКБ.

Чем выше ток заряда, тем ярче эффект резиновой ленты. Низкая температура или наличие ячейки с высоким внутренним сопротивлением лишь усиливают эффект.


Структура литий-ионной аккумуляторной батареи в самом простейшем виде: 1- минусовая шина из меди; 2 — плюсовая шина из алюминия; 3 — анод из оксида кобальта; 4- катод из графита; 5 — электролит

Оценка состояния заряда путем считывания напряжения заряженной батареи нецелесообразна. Измерение напряжения разомкнутой цепи (холостой ход) после того, как батарея покоилась несколько часов, является лучшим оценочным индикатором.

Как и для других батарей, температура влияет на холостой ход точно так же, как влияет на активный материал литий-ионной АКБ. , ноутбуков и других устройств оценивается путем подсчета кулонов.

Литий-ионный АКБ: порог насыщения

Литий-ионный аккумулятор не способен поглощать избыточный заряд. Поэтому при полном насыщении аккумулятора ток заряда сразу необходимо снять.

Постоянный текущий заряд может привести к металлизации элементов лития, что нарушает принцип обеспечения безопасности эксплуатации таких АКБ.

Чтобы свести к минимуму образование дефектов, следует как можно быстрее отключать литий-ионный аккумулятор при достижении пика заряда.


Этот аккумулятор уже не возьмёт заряда ровно столько, сколько ему положено. По причине неправильной зарядки он утратил свои главные свойства накопителя энергии

Как только заряд прекращается, напряжение литий-ионного аккумулятора начинает падать. Проявляется эффект уменьшения физического напряжения.

Некоторое время напряжение холостого хода будет распределяться между неравномерно заряженными ячейками с напряжением 3,70 В и 3,90 В.

Здесь также обращает на себя внимание процесс, когда литий-ионная батарея, получившая полностью насыщенный заряд, начинает заряжать соседнюю (если таковая включена в схему), не получившую заряд насыщения.

Когда литий-ионные батареи требуется постоянно держать в зарядном устройстве с целью обеспечения их готовности, следует делать ставку на зарядные устройства, имеющие функцию кратковременного компенсационного заряда.

Зарядное устройство с функцией кратковременного компенсационного заряда включается, если напряжение разомкнутой цепи падает до 4.05 В/я и выключается при достижении напряжения 4.20 В/я.

Зарядные устройства, предназначенные для оперативной готовности или для работы в режиме ожидания, часто позволяют снизить напряжение батареи до 4,00В/я и заряжают литий-ионные АКБ только до уровня 4,05В/я, не давая достичь полного уровня 4.20В/я.

Подобная методика снижает напряжение физическое, неотъемлемо связанное с напряжением техническим, и способствует продлению срока службы батареи.

Заряд безкобальтовых аккумуляторов

Аккумуляторы в традиционном исполнении имеют номинальное напряжение ячейки равное 3,60 вольта. Однако для приборов, не содержащих кобальта, номинал другой.

Так, литий-фосфатные аккумуляторы обладают номиналом 3,20 вольта (зарядное напряжение 3,65В). А новые литий-титанатные аккумуляторы (производство Россия) имеют номинальное напряжение ячейки 2,40В (зарядное 2,85).


Литий-фосфатные аккумуляторные батареи относятся к накопителям энергии, которые не содержат в своей структуре кобальт. Этот факт несколько меняет условия зарядки таких аккумуляторов

Для таких батарей традиционные зарядные устройства не подходят, так как перегружают АКБ с угрозой взрыва. И наоборот, система зарядки для безкобальтовых батарей не обеспечит достаточным зарядом на 3,60В традиционный литий-ионный аккумулятор.

Превышенный заряда литий-ионного аккумулятора

Литий-ионный аккумулятор безопасно работает в пределах заданных рабочих напряжений. Однако работа батареи становится нестабильной, если она заряжается выше рабочих норм.

Длительная зарядка литий-ионной батареи напряжением выше 4,30В, предназначенной под рабочий номинал 4.20В, чревата металлизацией анода литием.

Материал катода, в свою очередь, приобретает свойства окислителя, утрачивает стабильность состояния, выделяет углекислый газ.

Давление аккумуляторной ячейки нарастает и если заряд продолжается, устройство внутренней защиты сработает при давлении от 1000 кПа до 3180 кПа.

Если же рост давления продолжается и после этого, открывается защитная мембрана при уровне давления 3,450 кПа. В таком состоянии ячейка литий-ионного аккумулятора находится на грани взрыва и в конечном итоге именно так и происходит.


Структура: 1 — верхняя крышка; 2 — верхний изолятор; 3 — стальная банка; 4 — нижний изолятор; 5 — вкладка анода; 6 — катод; 7 — сепаратор; 8 — анод; 9 — вкладка катода; 10 — отдушина; 11 — PTC; 12 — прокладка

Срабатывание защиты внутри литий-ионного аккумулятора связано с повышением температуры внутреннего содержимого. Полностью заряженная аккумуляторная батарея имеет более высокую внутреннюю температуру, чем частично заряженная.

Поэтому литий-ионные батареи видятся более безопасными при условии низкоуровневой зарядки. Вот почему власти некоторых стран требуют использовать в самолётах Li-ion АКБ, насыщенные энергией не выше 30% от их полной ёмкости.

Порог внутренней температуры батарей при полной загрузке составляет:

  • 130-150°C (для литий-кобальтовых);
  • 170-180°C (для никель-марганец-кобальтовых);
  • 230-250°C (для литий-марганцевых).

Следует отметить: литий-фосфатные аккумуляторы обладают лучшей температурной устойчивостью, чем литий-марганцевые АКБ. Литий-ионные батареи не единственные из числа тех, что представляют опасность в условиях энергетической перегрузки.

К примеру, свинцово-никелевые аккумуляторы также предрасположены к расплавлению с последующим возгоранием, если насыщение энергией выполняется с нарушениями паспортного режима.

Поэтому применение зарядных устройств, идеально подходящих к батарее, имеет первостепенное значение для всех литий-ионных аккумуляторов.

Некоторые выводы от анализа

Зарядка литий-ионных батарей отличается упрощённой методикой по сравнению с никелевыми системами. Схема зарядки прямолинейная, с ограничениями напряжения и тока.

Такая схема значительно проще, чем схема, анализирующая сложные сигнатуры напряжения, изменяющиеся по мере эксплуатации батареи.

Процесс насыщения энергией литий-ионных батарей допускает прерывания, эти аккумуляторы не нуждается в полном насыщении, как в случае с кислотно-свинцовыми АКБ.


Схема контроллера для маломощных литий-ионных аккумуляторов. Простое решение и минимум деталей. Но схема не обеспечивает условия цикла, при которых сохраняется длительный срок службы

Свойства литий-ионных аккумуляторов обещают преимущества в работе возобновляемых источников энергии (солнечных панелей и ветряных турбин). Как правило, или ветрогенератор редко обеспечивают полный заряд аккумулятора.

Для литий-иона отсутствие требований стабильной подзарядки упрощает схему контроллера заряда. Литий-ионный аккумулятор не требует контроллера, выравнивающего напряжение и ток, как того требуют свинцово-кислотные АКБ.

Все бытовые и большинство промышленных литий-ионных зарядных устройств полностью заряжают аккумулятор. Однако существующие устройства зарядки литий-ионных батарей в массе своей не обеспечивают регуляцию напряжения в конце цикла.

Литиевые аккумуляторы

Литиевые или литий-ионные (Li-ion) аккумуляторы в основном присутствуют в сотовых телефонах, ноутбуках, видеокамерах. Изделия дорогие, аккумуляторы тоже, поэтому и обращаться с ними нужно еще грамотнее, чем с любыми другими аккумуляторами. Так в чем же сила Литий-Йона? Здесь, наверное, еще больше слухов и мифов. Во-первых, она начинает появляться сама собой хотя бы потому, что продавцы техники с Li-ion аккумуляторами особых напутствий не дают, говоря, что батарея “умная” и сама все сделает как надо. А вот и не сама. Ведь сколько есть случаев, когда владельцы новых ноутбуков за месяц батарею приводили в негодность и потом платили хорошие за новую батарею. Конечно, литиевые батареи потому и дорогие, что напичканы электроникой, но она, к сожалению, не спасает от дурака.

Переразряд

Как и в случае никелевых аккумуляторов, литиевые также сильно боятся перезаряда и переразряда. Но, поскольку эти батареи используются в интеллектуальных устройствах и комплектуются собственными зарядными устройствами, их электроника не допускает перезаряда – т.о. его можно не бояться. А вот переразряд сложнее контролировать, поэтому он и является самой типичной причиной досрочного выхода аккумулятора из строя. Конечно, в дорогих и сложных устройствах, например, в ноутбуках, отключение происходит до падения напряжения до критического значения. Но прецеденты указывают на то, что это аварийное отключение лучше рассматривать как экстренную меру, до которой, по возможности, лучше не доводить. Это самое главное правило – избегать полной разрядки, поскольку низкое напряжение может отключить цепь аварийной защиты. Бывает, что люди «убивают» батареи, увлекшись тренировкой. Тренировка - вещь хорошая, но для литиевых батарей достаточно 2-3 полных цикла.

Для литиевых батарей нет эффекта памяти, поэтому их можно заряжать когда угодно, так что после тренировки лучше не разряжать батареи до конца. Рекомендуемый нижний порог – 5-10 %. Критический нижний порог – 3 %.

Много неполных циклов или один полный

У литиевых батарей срок службы – примерно 300 циклов. Полным циклом считается цикл полного заряда и полного (т.е. примерно до 3 % емкости) разряда, или наоборот. Если разрядить батарею до 50 %, а потом зарядить, то это будет 1/2 цикла, если до 75 % и зарядить – 1/4 цикла и т.д. Так вот, для телефонов и ноутбуков разница в пользе между полными и неполными циклами различна. В Интернете упорно утверждается, что куча народа заряжала телефоны при неполном разряде (т.е. каждый день дозаряжали телефон) и в итоге угробила их . В то же время, для ноутбуков достоверно известно, что полные циклы быстрее изнашивают батарею, чем неполные . Ситуация проясняется при детальном рассмотрении устройства Li-ion аккумуляторов (см. доп. материалы). Оказывается, многое зависит от контроллера. Именно он контролирует ток заряда, следит за состоянием батареи и т.д. Так вот, в ноутбуках контроллер расположен в самой батарее и корректируется системными утилитами, например калибровкой. В сотовых телефонах контроллер расположен в самом телефоне и так просто не корректируется. Хоть в литиевых батареях и нет эффекта памяти, но есть так называемый эффект “цифровой памяти” . Дело в том, что электроника управления зарядом-разрядом, размещенная в самой батарее, работает независимо от устройства, батарею использующего. Внутренняя электроника следит за уровнем напряжения элемента, прерывает заряд по достижении установленной максимальной величины (с учетом изменения напряжения, обусловленного током зарядки и температуры батареи), прерывает разряд при достижении критической величины и сообщает об этом “наверх” (для этих целей производится большая номенклатура специализированных микросхем). Система же мониторинга батареи “наверху” вычисляет уровень заряда, основываясь на информации о моментах выключения заряда и разряда от батареи и показаниях системы измерения тока. Но если условия работы таковы, что полной разрядки до аппаратного отключения или полной зарядки не происходит, эти вычисления после нескольких циклов могут стать не вполне корректными – емкость батареи со временем падает, да и показания измерителя тока не всегда могут соответствовать реальности. Обычно отклонения не превышают одного процента на каждый цикл, если только в процессе эксплуатации не произошло серьезных изменений, связанных, к примеру, с выходом из строя одного из элементов батареи. Система мониторинга имеет возможность “обучаться”, то есть пересчитывать значение полной емкости батареи, но для этого нужно выполнить как минимум один полный цикл заряд-разряд до срабатывания аппаратных схем самой батареи. Вот и выходит, что при очень частых циклах контроллер сбивается, а, следовательно, неправильно вычисляет заряд батареи и осуществляет неправильную зарядку, в результате чего батарея портится. В отличие от ноутбука, телефон перекалибровать нельзя. Все, что остается в данном случае, это сделать пару полных циклов, чтобы привести контроллер в порядок. Я рекомендую, в идеале, совмещать полные и неполные циклы, придерживаясь принципа “золотой середины”. Лично я со своим сотовым так и делал – в результате, после 2-х лет эксплуатации падение емкости составило не более 40 %, что является нормой. Отчасти, время тоже не щадит литиевые аккумуляторы – они изнашиваются со временем независимо от эксплуатации; век их недолог и разумно менять аккумуляторы раз в 2-3 года.

Хранение

Если аккумулятор не используется, рекомендуется хранить его при 40 % емкости в прохладном месте. Нижний предел температуры для хранения и эксплуатации – 00 С. Вообще литиевые аккумуляторы любят быть заряженными, т.е. их лучше и хранить и держать в заряженном состоянии, в отличие от никелевых. Но при длительном хранении максимальный заряд все же сильнее изнашивает батарею, поэтому оптимальным состоянием считается 40 % заряда .

Реанимация батареи

Вообще, если батарея сдохла, лучше купить новую, это самый логичный вариант, хотя и дорогой. Достоверных рецептов реанимации батарей я не встречал. Тут ходят настоящие легенды, особенно про ноутбуки, что люди реанимировали свой угробленный аккумулятор ноутбука и все у них замечательно. Одна из них звучит так: “Нужно полностью разрядить аккумулятор, оставить ноутбук на неделю; затем полностью зарядить аккумулятор и тоже оставить на неделю; через два месяца емкость должна восстановиться” .

Для сотовых телефонов: совмещать полные и неполные циклы (в пропорции “ХЗ”).
Для ноутбуков: как можно меньше полных циклов (после тренировки).
Для всех: рекомендуется делать 80%-ные циклы; не допускать полного разряда (ниже 3 %).

В данное время широко распространены li ion аккумуляторы и Li-pol (литий-полимерные).

Различия между ними состоит в электролите. В первом варианте в качестве его используется гелий, во втором – насыщенный раствором, содержащим литий, полимер. Сегодня, благодаря популярности автомобилей на электродвигателях остро стоит вопрос поиска идеального типа аккумулятора li ion, который оптимально подойдет для такого транспорт.

Состоит он, как и другие аккумуляторы, из анода (пористый углерод) и катода (литий), разделяющего их сепаратора и проводника — электролита. Процесс разрядки сопровождается переходом «анодных» ионов на катод через сепаратор и электролит. Их направление изменяется на противоположное во время зарядки (рисунок ниже).

Ионы циркулируют в процессе разрядки и зарядки ячейки между разноименно заряженными электродами.

Ионные батареи имею катод, выполненный из разных металлов, что является их главным отличием. Производители, используя для электродов разные материалы, улучшают характеристики аккумуляторов.

Но, случается, что улучшение одних характеристик приводит к резкому ухудшению других. Например, при оптимизации емкости, необходимой, чтобы увеличить время поездки, можно увеличить мощность, безопасность, снизить негативное воздействие на окружающую среду. Одновременно можно уменьшить ток нагрузки, увеличить стоимость или размер аккумуляторной батареи.

Познакомиться с главными параметрами разных типов литиевых батарей (литий-марганцевых, литий – кобальтовых, литий – фосфатных и никель-марганец – кобальтовых) можно в таблице:

Правила для пользователей электротранспортом

Емкость таких батарей при длительном хранении практически не уменьшается. Разряжаются li ion аккумуляторы всего на 23% , если хранится при температуре 60 градусов на протяжении 15 лет. Именно благодаря этим свойствам их широко применяют в электротранспортных технологиях.

Для электрического транспорта подходят литий – ионные батареи, имеющие полноценную систему управления, встроенную в корпус.

По этой причине пользователи при эксплуатации забывают об основных правилах, способных продлению их срока службы:

  • аккумулятор необходимо полностью зарядить сразу после его покупки в магазине, поскольку в процессе производства заряжаются электроды на 50%. Поэтому доступная емкость уменьшится, т.е. время работы, если отсутствует первоначальная зарядка;
  • нельзя допускать полной разрядки батареи, чтобы сохранить ее ресурс;
  • заряжать батарею необходимо после каждого выезда, пусть даже заряд еще остался;
  • не нагревать аккумуляторы, поскольку высокие температуры способствуют процессу старения. Для того, чтобы использовать ресурс максимально, нужно эксплуатацию проводить при оптимальной температуре, которой является 20-25 градусов. Следовательно, вблизи теплового источника батарею нельзя хранить;
  • в холодное время рекомендуется завернуть аккумулятор в полиэтиленовый пакет с вакуумным замком, чтобы хранить при 3-4 градусах, т.е. в помещении не отапливаемом. Заряд составлять должен хотя бы 50% от полного;
  • после того, как аккумулятор эксплуатировался при отрицательных температурах, нельзя его заряжать, не выдержав некоторое время при температуре комнатной, т. е. его требуется прогреть;
  • заряжать батарею нужно от зарядного устройства, поставляемого в комплекте.

ПУ этих батарей несколько подвидов — литий – LiFePO4 (железо – фосфатные), использующие катод из фосфата железа. Характеристики их позволяют говорить об аккумуляторах, как о вершине технологий, используемых для производства батарей.

Основными их преимуществами являются:

  • количество циклов заряда-разряда, которое достигает 5000 до момента, когда емкость уменьшится на 20%;
  • длительный срок эксплуатации;
  • отсутствующий «эффект памяти»;
  • широкий температурный диапазон при неизменных рабочих характеристиках (300-700 градусов Цельсия);
  • химическая стабильность и термическая, повышающие безопасность.

Наиболее широко применяемые аккумуляторы

Среди множества наиболее распространены li ion аккумуляторы типоразмера 18650, выпускаемые пятью компаниями: LG, Sony, Panasonic, Samsung, Sanyo, заводы которых находятся в Японии, Китае, Малайзии и Южной Карее. Планировалось, что использоваться li ion аккумуляторы 18650 будут в ноутбуках. Однако, благодаря удачному формату их применяют в моделях на радиоуправлении, электромобилях, фонарях и т.д.

Как всякий качественный товар, такие аккумуляторы имеют много подделок, поэтому, чтобы продлить срок эксплуатации прибора, приобретать нужно только батареи известных брендов.

Защищенные и незащищенные литий – ионные батареи

Важно для литиевых батарей также, защищенными они являются или нет. Рабочий диапазон первых — 4,2-2,5В (применяются в девайсах, рассчитанных на работу с литий-ионными источниками): светодиодных фонарях, бытовой маломощной технике и пр.

В электроинструментах, велосипедах с электродвигателями, ноутбуках, видео- и фототехнике применяются незащищенные аккумуляторы, управляемые контроллером.

Что необходимо знать о литий — ионных батареях?

В первую очередь, ограничения, которые нужно соблюдать при эксплуатации:

  • напряжение перезарядки (максимальное) не может быть выше 4,35В;
  • минимальное же его значение не может пускаться ниже отметки в 2,3 В;
  • ток разряда не должен превышать более чем в два раза, значение емкости. Если значение последней — 2200мАЧ, величина тока максимальная составляет 4400 мА.

Функции, выполняемые контроллером

Для чего нужен контроллер заряда li ion аккумулятора? Он выполняет несколько функций:

  • подает ток, компенсирующий саморазряд. Его величина меньше, чем максимальный ток заряда, но больше, чем ток саморазряда;
  • реализует эффективный алгоритм цикла заряд/разряд для конкретного аккумулятора;
  • компенсирует разницу энергетических потоков при одновременной зарядке и обеспечении энергией потребителя. К примеру, при зарядке и питании ноутбука;
  • измеряет при перегреве или переохлаждении температуру, предотвращая порчу батарее.

Изготавливают контроллер заряда li ion аккумулятора либо в виде встраиваемой в батарею микросхемы, либо как отдельное устройство.

Для зарядки батарей лучше использовать штатное зарядное устройство для 18650 li ion аккумуляторов, поставляемое в комплекте. Зарядное устройство для литиевых аккумуляторов 18650 обычно имеет индикацию уровня заряда. Чаще это светодиод, который показывает, когда идет заряд и его окончание.

На более продвинутых устройствах можно отслеживать на дисплее время, оставшееся до окончания заряда, текущее напряжение. Для аккумулятора 18650, емкость которого 2200мА, время зарядки составляет 2 часа.

Но, важно знать, каким током заряжать li ion аккумулятор 18650. Он должен составлять половину номинальной емкости, т.е., если она составляет 2000 mAh, то ток оптимальный – 1А. Заряжая аккумулятор высоким током, быстро наступает его деградация. При использовании низкого тока потребуется больше времени.

Видео: Как заряжать аккумулятор Li ion зарядное своими руками

Схема устройства для зарядки аккумуляторов

Выглядит она следующим образом:

Отличается схема надежностью и повторяемостью, а входящие детали являются недорогими и легкодоступными. Чтобы срок эксплуатации батареи увеличить, требуется грамотная зарядка li ion аккумуляторов: к концу зарядки напряжение должно уменьшаться.

После ее завершения, т.е. при достижении нулевой отметки током, должна остановиться зарядка li ion аккумулятора. Схема, приведенная выше, этим требованиям удовлетворяет: подключенный к зарядному устройству разряженный АКБ (загорается VD3), использует ток 300мА.

Об идущем процессе свидетельствует горящий светодиод VD1.Постепенно уменьшающийся до 30 мА ток, свидетельствует о зарядке аккумулятора. Об окончании процесса сигнализирует, загоревшийся светодиод VD2.

В схеме использован операционный усилитель LM358N (можно заменить его аналогом КР1040УД1 или же КР574УД2, отличающимся расположением выводов), а также транзистор VT1 S8550 9 светодиоды желтого, красного и зеленого цветов (1,5В).

Можно ли реанимировать аккумулятор?

После пары лет активной эксплуатации аккумуляторы катастрофически теряют емкость, создавая проблемы при пользовании любимым девайсом. Возможно ли, и как восстановить li ion аккумулятор пока пользователь занимается поиском замены?

Восстановление li ion аккумулятора возможно на время несколькими способами.

Если вздулась батарея, т.е. перестала держать заряд, значит, внутри скопились газы.

Тогда поступают следующим образом:

  • корпус батареи отсоединяют аккуратно от датчика;
  • отделяют электронный датчик;
  • находят под ним колпачок с управляющей электроникой и прокалывают его осторожно иглой;
  • затем, находят тяжелый плоский предмет, по площади больший, чем площадь батареи, использоваться который будет в качестве пресса (не применять тиски и аналогичные устройства);
  • положить батарею на горизонтальную плоскость, и придавить прессом, помня, что аккумулятор можно повредить, прикладывая чрезмерное усилие. Если же оно недостаточно, результата можно не достичь. Это самый ответственный момент;
  • осталось капнуть на отверстие эпоксидной смолой и припаять датчик.

Есть и другие способы, прочесть о которых можно на страницах Интернет.

Подобрать зарядное устройство можно на сайте http://18650.in.ua/chargers/ .

Видео: Li-ion аккумуляторы, советы по эксплуатации li-ion батарей

Категория: Поддержка по аккумуляторным батареям Опубликовано 30.03.2016 23:38

Разные подвиды литий-ионной электрохимической системы именуются по типу своего активного вещества, и могут обозначаться как полностью словами, так и в укороченном виде - химическими формулами. Объединяется литиевые аккумуляторы то, что все они относятся к герметичным необслуживаемым аккумуляторам . Такие формулы не очень удобны для прочтения или запоминания ввиду своей сложности, поэтому и они упрощаются - к буквенной аббревиатуре.

Например, кобальтит лития, один из самых распространенных материалов для литий-ионных аккумуляторов, имеет химическую формулу LiCoO2 и аббревиатуру LCO. Из соображений простоты также может использоваться короткая словесная форма - “литий-кобальт”. Кобальт является основным активным веществом и именно по нему характеризуется тип батареи. Другие типы литий-ионной электрохимической системы также аналогично сводятся к краткой форме. В данном разделе перечислены шесть наиболее распространенных типов Li-ion.

1. Литий-кобальтовый аккумулятор (LiCoO2)

Высокий показатель удельной энергоемкости делает литий-кобальтовый аккумулятор популярным выбором для мобильных телефонов, ноутбуков и цифровых камер. Аккумулятор состоит из графитового анода и катода из оксида кобальта. Катод имеет слоистую структуру и во время разряда ионы лития перемещаются к нему от анода. При зарядке направление меняется на противополжное. Недостатком литий-кобальтовых аккумуляторов является относительно короткий срок службы, низкая термическая стабильность и ограниченные возможности нагрузки (удельная мощность). На рисунке 1 показана структура такого аккумулятора.

Рисунок 1: Структура литий-кобальтового аккумулятора. Во время разряда ионы лития перемещаются от анода к катоду, при зарядке - от катода к аноду.

Литий-кобальтовый аккумулятор не может заряжаться или разряжаться при силе тока выше его С-рейтинга . Это означает, что ячейка типоразмера 18650 емкостью 2400 мАч может заряжаться или разряжаться силой тока не превышающей 2400 мА. Принудительный быстрый заряд или подключение нагрузки, требующей больше чем 2400 мА, приведет к чрезмерному стрессу и перегреву. Для быстрой зарядки производители рекомендуют С-рейтинг 0,8С или около 2000 мА. При использовании системы защиты аккумулятора она автоматически ограничивает заряд и разряд до безопасного уровня - около 1С.

Рисунок 2: Оценка усредненного литий-кобальтового аккумулятора. Литий-кобальтовая электрохимическая система выделяется высокой удельной энергоемкостью, но предлагает средние показатели удельной мощности, безопасности и срока службы.

Таблица характеристик

Кобальтит лития: LiCoO2 катод (~60% кобальта), графитовый анод
Сокращенное обозначение: LCO или Li-кобальт
Разработан в 1991 году
Напряжение 3,60 В номинальное; стандартный рабочий диапазон - 3,0-4,2 В
Удельная энергоемкость 150-200 Вт*ч/кг; специализированные модели обеспечивают до 240 Вт*ч/кг
С-рейтинг зарядки 0,7-1С, напряжение зарядки 4,20 В (большинство моделей); процесс зарядки обычно занимает 3 часа; зарядка силой тока больше 1С сокращает срок службы батареи
С-рейтинг разряда 1С; при напряжении ниже 2,50 В срабатывает отсекатель; разряд силой тока выше 1С сокращает срок службы батареи
500-1000, зависит от глубины разрядов, нагрузки, температур
Тепловой пробой Обычно при 150°С. Полный заряд способствует тепловому пробою
Области применения Мобильные телефоны, планшеты, ноутбуки, фотоаппараты
Комментарий Очень высокая удельная энергоемкость, ограниченная удельная мощность. Высокая стоимость кобальта. Служит в областях, где требуется большая емкость. Имеет стабильный спрос на рынке.

Таблица 3: Характеристики литий-кобальтового аккумулятора.

2. Литий-марганцевый аккумулятор (LiMn2O4)

Устройство литий-ионного аккумулятора с марганцевой шпинелью было впервые опубликовано в журнале “Materials Research Bulletin” в 1983 году. В 1996 году компания Moli Energy коммерциализировала литий-ионную ячейку с литий-марганцевой шпинелью в качестве материала катода. Трехмерная структура шпинели улучшает поток ионов на электроде, что приводит к уменьшению внутреннего сопротивления и улучшению обработки тока. Еще одним преимуществом шпинели является высокая термическая стабильность, но срок жизни и количество циклов ограничены.

Низкое внутреннее сопротивление такой ячейки обеспечивает быструю зарядку и высокое возможное значение силы тока разряда. В типоразмере 18650 литий-марганцевый аккумулятор может разряжаться силой тока в 20-30 А с умеренным теплообразованием. Кроме того, он способен выдерживать импульсы до 50 А в течение одной-двух секунд. Непрерывная же нагрузка в 50 А приведет к нагреву аккумулятора, который не должен превышать 80°С во избежание деградации. Литий-марганцевые аккумуляторы используются для мощных инструментов, медицинского оборудования, а также в гибридном и электротранспорте.

На рисунке 4 представлена графическая иллюстрация трехмерного кристаллического каркаса материала катода. Этим материалом является шпинель, у которой начальная ромбовидная решеточная структура трансформируется в трехмерную.

Рисунок 4: Структура литий-марганцевого аккумулятора. Катод из кристаллической литий-марганцевой шпинели имеет трехмерную каркасную структуру, которая появляется после начального формирования. Шпинель обеспечивает низкое сопротивление, но имеет более умеренную удельную энергоемкость чем кобальт.

Емкость литий-марганцевого аккумулятора примерно на треть меньше емкости литий-кобальтового. Гибкость конструкции позволяет оптимизировать батарею под разные задачи и создавать модели с улучшенными показателями долговечности, удельной мощности или удельной энергоемкости. Например, версия в типоразмере 18650 с улучшенными показателями мощности имеет емкость только 1100 мАч, в то время как оптимизированная под емкость - 1500 мАч.

На рисунке 5 показан гексагональный график типичного литий-марганцевого аккумулятора. Характеристики могут казаться не особо впечатлительными, но последние разработки имеют улучшенные показатели удельной мощности, безопасности и продолжительности жизни.

Рисунок 5: Характеристики обычной литий-марганцевого аккумулятора. Несмотря на умеренную общую производительность, новые модели демонстрируют улучшенную удельную мощность, безопасность и продолжительность жизни.

Большинство литий-марганцевых аккумуляторов комбинируются с литий-никель-марганец-кобальтовыми (NMC) для повышения удельной энергоемкости и продления срока службы. Этот союз позволяет использовать сильные стороны обеих систем и называется LMO (NMC). Именно эти комбинированные аккумуляторы используются в большинстве электромобилей, таких как Nissan Leaf, Chevy Volt и BMW i3. LMO – часть такого аккумулятора, которая составляет около 30 %, обеспечивает высокие ускорительные возможности электродвигателя, а NMC часть отвечает за размер автономного пробега.

Исследования в литий-ионной системе в значительной степени тяготеют к объединению литий-марганцевых ячеек с никель-марганец-кобальтовыми. Эти три активных металла могут легко комбинироваться для получения необходимого результата, будь то повышение удельной мощности, нагрузочных характеристик или долговечности аккумулятора. Этот широкий диапазон возможностей необходим для удовлетворения единым технологическим подходом и рынка потребительских аккумуляторов, где на первом месте стоит емкость; и промышленности, где необходимы аккумуляторные системы с хорошими нагрузочными характеристиками, с длительным сроком службы и с надежной безопасной эксплуатацией.

Таблица характеристик

Литий-марганцевая шпинель: LiMn2O4 катод, графитовый анод
Сокращенное обозначение: LNO или Li-марганцевый (шпинельная структура)
Разработан в 1996 году
Напряжение 3,70 В (3,80 В) номинальное; стандартный рабочий диапазон - 3.0-4.2 В
Удельная энергоемкость 100-150 Вт*ч/кг
С-рейтинг зарядки Стандарт 0,7-1С; 3С максимум; зарядка до 4,20 В (большинство батарей)
С-рейтинг разряда Стандарт 1С; существуют модели с 10С; импульсный режим работы (до 5 секунд) - 50С; при 2,50 В срабатывает отсекатель
Количество циклов заряда/разряда 300-700 (зависит от глубины разрядов и температуры)
Тепловой пробой Обычно при 250°С. Полный заряд способствует тепловому пробою
Области применения Электроинструмент, медицинское оборудование, электрические силовые агрегаты
Комментарий Высокая мощность, но умеренная емкость; безопаснее литий-кобальтовых; обычно используется вместе с NMC

Таблица 6: Характеристики литий-марганцевого аккумулятора.

3. Литий-никель-марганец-кобальт-оксидный аккумулятор (LiNiMnCoO2 или NMC)

Одним из наиболее успешных вариантов исполнения литий-ионной электрохимической системы является сочетание никеля, марганца и кобальта (NMC) в катоде. По аналогии с литий-марганцевыми, эти системы могут быть оптимизированы под емкость или мощность. Например, NMC аккумулятор в типоразмере ячейки 18650 для умеренной нагрузки имеет емкость 2800 мАч и может обеспечивать силу тока в 4-5 А; а версия в том же типоразмере, но оптимизированная под мощностные показатели имеет емкость только 2000 мАч, но максимальная сила тока разряда у нее - 20 А. Показатель емкости можно увеличить и до 4000 мАч, если добавить кремний в состав анода. Но с другой стороны, это значительно уменьшит нагрузочные характеристики и долговечность такого аккумулятора. Столь неоднозначные свойства кремния появляются из-за его расширения и уменьшения при зарядке и разрядке, что приводит к механической неустойчивости конструкции аккумулятора.

Секрет технологии NMC заключается в сочетании никеля и марганца. Аналогией может служить обыкновенная поваренная соль, где по отдельности ее компоненты, натрий и хлор, весьма токсичны, но их соединение образует полезное пищевое вещество. Никель известен своей высокой удельной энергоемкостью, но низкой стабильностью; марганец же имеет преимущество в виде шпинельной структуры, которая обеспечивает низкое внутреннее сопротивление, но и приводит к недостатку - низкой удельной энергоемкости. Сочетание же этих металлов позволяет компенсировать недостатки друг друга и в полной мере использовать сильные стороны.

NMC аккумуляторы используются для мощных инструментов, электровелосипедов и других силовых агрегатов. Состав катода, как правило, сочетает никель, марганец и кобальт в равных частях, то есть каждый металл занимает треть от общего объема. Такое распределение также известно как 1-1-1. Сочетание в таком соотношении выгодно своей стоимостью, так как содержание дорогого кобальта по сравнению с другими версиями батареи относительно невелико. Еще одна успешная комбинация NMC содержит 5 частей никеля, 3 части кобальта и 2 части марганца. Эксперименты по поиску удачных комбинаций этих активных веществ продолжаются и сейчас. На рисунке 7 продемонстрированы характеристики NMC аккумулятора.

Рисунок 7: Оценка характеристик NMC аккумулятора. NMC имеет хорошую общую производительность и отличную удельную энергоемкость. Данная аккумуляторная батарея является предпочтительным выбором для электротранспорта и имеет самый низкий уровень самонагрева.

В последнее время именно NMC семейство литий-ионных аккумуляторов становится наиболее популярным, так как благодаря возможности комбинации активных веществ стало можно сконструировать экономичную батарею с хорошей производительностью. Никель, марганец и кобальт могут быть легко смешаны, чтобы удовлетворить широкий спектр требований для электротранспорта или систем аккумулирования энергии, специфика которых предполагает регулярную циклическую работу. Семейство NMC аккумуляторов активно развивается в своем многообразии.

Таблица характеристик

Литий-никель-марганец-кобальт-оксид: LiNiMnCoO2 катод, графитовый анод
Сокращенное обозначение: NMC (NCM, CMN, CNM, MNC, MCN аналогично комбинации металлов)
Разработан в 2008 году
Напряжение 3,60-3,70 В номинальное; стандартный рабочий диапазон - 3,0-4,2 В на ячейку, или выше
Удельная энергоемкость 150-220 Вт*ч/кг
С-рейтинг зарядки 0,7-1С, зарядка до 4,20 В, в некоторых моделях до 4,30 В; процесс зарядки обычно занимает 3 часа; зарядка силой тока больше 1С сокращает срок службы батареи
С-рейтинг разряда 1С; некоторые модели поддерживают 2С; при 2,50 В срабатывает отсекатель
Количество циклов заряда/разряда
Тепловой пробой Обычно при 210°С. Полный заряд способствует тепловому пробою
Области применения Электровелосипеды, медицинское оборудование, электроавтомобили, промышленность
Комментарий Обеспечивают высокую емкость и мощность. Широкий спектр практического применения, доля рынка стремительно растет

Таблица 8: Характеристики литий-никель-марганец-кобальт-оксидного (NMC) аккумулятора.

4. Литий-железо-фосфатный аккумулятор (LiFePO4)

В 1996 году в Университете Техаса были проведены исследования, в результате которых был открыт новый материал для катода литий-ионного аккумулятора - фосфат железа. Литий-фосфатная система обладает хорошими электрохимическими свойствами и низким внутренним сопротивлением. Основными преимуществами таких аккумуляторов являются высокие показатели силы тока и длительный срок службы, к тому же они обладают хорошей термической стабильностью, повышенной безопасностью и стойкостью к неправильному использованию.

Литий-фосфатные аккумуляторы более стойкие к перезаряду; если в случае длительного времени к ним приложено высокое напряжение, то деградационные последствия будут заметно меньше в сравнении с другими литий-ионными аккумуляторами. Но напряжение ячейки в 3.20 В снижает показатель удельной энергоемкости до уровня, даже меньшего, чем у литий-марганцевого аккумулятора. Для большинства электрических батарей холодная температура снижает производительность, а жаркая - сокращает срок службы, литий-фосфатная система не является исключением. У нее также более высокий показатель саморазряда в сравнении с другими литий-ионными аккумуляторами. На рисунке 9 показаны характеристики литий-фосфатного аккумулятора.

Литий-фосфатные аккумуляторы часто используются в качестве замены стартерным свинцово-кислотным. Четыре ячейки такой батареи обеспечат напряжение в 12,8 В - аналогично напряжению шести двухвольтовых ячеек свинцово-кислотного. Генератор транспортного средства подзаряжает свинцово-кислотный аккумулятор до 14,40 В (2,40 В на ячейку). Для четырех литий-фосфатных ячеек предельное напряжение будет 3,60 В, после подзарядку следует отключить, чего не происходит в обычном транспортном средстве. Литий-фосфатные аккумуляторы стойкие к перезаряду, но даже они при длительном сохранении повышенного напряжения деградируют. Низкие температуры также могут стать проблемой при использовании литий-фосфатного аккумулятора в качестве замены обычному стартерному.

Рисунок 9: Оценка характеристик литий-фосфатного аккумулятора. Литий-фосфатная электрохимическая система обеспечивает отличную безопасность и долгий срок службы, но удельная энергоемкость имеет умеренные показатели, также стоит отметить высокий саморазряд.

Таблица характеристик

Литий-феррофосфат: LiFePO4 катод, графитовый анод
Сокращенное обозначение: LFP или Li-фосфат
Напряжение 3,20, 3,30 В номинальное; стандартный рабочий диапазон - 2,5-3,65 В на ячейку
Удельная энергоемкость 90-120 Вт*ч/кг
С-рейтинг зарядки 1С стандарт, зарядка до 3,65 В; процесс зарядки обычно занимает 3 часа
С-рейтинг разряда 1С; в некоторых версиях до 25С; 40 А импульсные токи (до 2 секунд); при 2,50 В срабатывает отсекатель (напряжение ниже 2 В наносит вред)
Количество циклов заряда/разряда 1000-2000 (зависит от глубины разрядов и температуры)
Тепловой пробой 270°С. Безопасный даже при полном заряде
Области применения Портативные и стационарные устройства, где необходимы высокие токи нагрузки и выносливость