Размер переменной c. Переменные в языке Си

В языке Си различают понятия “тип данных” и “модификатор типа”. Тип данных – это целый, а модификатор – со знаком или без знака. Целое со знаком будет иметь как положительные, так и отрицательные значения, а целое без знака – только положительные значения. В языке Си можно выделить пять базовых типов.

  • char – символьный.
  • Переменная типа char имеет размер 1 байт, ее значениями являются различные символы из кодовой таблицы, например: ‘ф’, ‘:’, ‘j’ (при записи в программе они заключаются в одинарные кавычки).

  • int – целый.
  • Размер переменной типа int в стандарте языка Си не определен. В большинстве систем программирования размер переменной типа int соответствует размеру целого машинного слова. Например, в компиляторах для 16-разрядных процессоров переменная типа int имеет размер 2 байта. В этом случае знаковые значения этой переменной могут лежать в диапазоне от -32768 до 32767.

  • float – вещественный.
  • Ключевое слово float позволяет определить переменные вещественного типа. Их значения имеют дробную часть, отделяемую точкой, например: -5.6, 31.28 и т.п. Вещественные числа могут быть записаны также в форме с плавающей точкой, например: -1.09e+4. Число перед символом “е” называется мантиссой, а после “е” – порядком. Переменная типа float занимает в памяти 32 бита. Она может принимать значения в диапазоне от 3.4е-38 до 3.4e+38.

  • double – вещественный двойной точности;
  • Ключевое слово double позволяет определить вещественную переменную двойной точности. Она занимает в памяти в два раза больше места, чем переменная типа float. Переменная типа double может принимать значения в диапазоне от 1.7e-308 до 1.7e+308.

  • void – не имеющий значения.
  • Ключевое слово void используется для нейтрализации значения объекта, например, для объявления функции, не возвращающей никаких значений.

Типы переменных:

Программы оперируют с различными данными, которые могут быть простыми и структурированными. Простые данные – это целые и вещественные числа, символы и указатели (адреса объектов в памяти). Целые числа не имеют, а вещественные имеют дробную часть. Структурированные данные – это массивы и структуры; они будут рассмотрены ниже.

Переменная – это ячейка в памяти компьютера, которая имеет имя и хранит некоторое значение. Значение переменной может меняться во время выполнения программы. При записи в ячейку нового значения старое стирается.

Хорошим стилем является осмысленное именование переменных. Имя переменной может содержать от одного до 32 символов. Разрешается использовать строчные и прописные буквы, цифры и символ подчёркивания, который в Си считается буквой. Первым символом обязательно должна быть буква. Имя переменной не может совпадать с зарезервированными словами.

Тип char

char – является самым экономным типом. Тип char может быть знаковым и беззнаковым. Обозначается, как “signed char” (знаковый тип) и “unsigned char” (беззнаковый тип). Знаковый тип может хранить значения в диапазоне от -128 до +127. Беззнаковый – от 0 до 255. Под переменную типа char отводится 1 байт памяти (8 бит).

Ключевые слова signed и unsigned указывают, как интерпретируется нулевой бит объявляемой переменной, т.е., если указано ключевое слово unsigned, то нулевой бит интерпретируется как часть числа, в противном случае нулевой бит интерпретируется как знаковый.

Тип int

Целочисленная величина int может быть short (короткой) или long (длинной). Ключевое слово short ставится после ключевых слов signed или unsigned. Таким образом, есть типы: signed short int, unsigned short int, signed long int, unsigned long int.

Переменная типа signed short int (знаковая короткая целая) может принимать значения от -32768 до +32767, unsigned short int (беззнаковая короткая целая) – от 0 до 65535. Под каждую из них отводится ровно по два байта памяти (16 бит).

При объявлении переменной типа signed short int ключевые слова signed и short могут быть пропущены, и такой тип переменной может быть объявлен просто int. Допускается и объявление этого типа одним ключевым словом short.

Переменная unsigned short int может быть объявлена как unsigned int или unsigned short.

Под каждую величину signed long int или unsigned long int отводится 4 байта памяти (32 бита). Значения переменных этого типа могут находиться в интервалах от -2147483648 до 2147483647 и от 0 до 4294967295 соответственно.

Существуют также переменные типа long long int, для которых отводится 8 байт памяти (64 бита). Они могут быть знаковыми и беззнаковыми. Для знакового типа диапазон значений лежит в пределах от -9223372036854775808 до 9223372036854775807, для беззнакового – от 0 до 18446744073709551615. Знаковый тип может быть объявлен и просто двумя ключевыми словами long long.

Тип Диапазон Шестнадцатеричный диапазон Размер
unsigned char 0 … 255 0x00 … 0xFF 8 bit
signed char
или просто
char
-128 … 127 -0x80 … 0x7F 8 bit
unsigned short int
или просто
unsigned int или unsigned short
0 … 65535 0x0000 … 0xFFFF 16 bit
signed short int или signed int
или просто
short или int
-32768 … 32767 0x8000 … 0x7FFF 16 bit
unsigned long int
или просто
unsigned long
0 … 4294967295 0x00000000 … 0xFFFFFFFF 32 bit
signed long
или просто
long
-2147483648 … 2147483647 0x80000000 … 0x7FFFFFFF 32 bit
unsigned long long 0 … 18446744073709551615 0x0000000000000000 … 0xFFFFFFFFFFFFFFFF 64 bit
signed long long
или просто
long long
-9223372036854775808 … 9223372036854775807 0x8000000000000000 … 0x7FFFFFFFFFFFFFFF 64 bit

Объявление переменных

Переменные объявляют в операторе описания. Оператор описания состоит из спецификации типа и списка имён переменных, разделённых запятой. В конце обязательно должна стоять точка с запятой.

[модификаторы] спецификатор_типа идентификатор [, идентификатор] ...

Модификаторы – ключевые слова signed, unsigned, short, long.
Спецификатор типа – ключевое слово char или int, определяющее тип объявляемой переменной.
Идентификатор – имя переменной.

Char x; int a, b, c; unsigned long long y;

При объявлении переменную можно проинициализировать, то есть присвоить ей начальное значение.

Int x = 100;

В переменную x при объявлении сразу же будет записано число 100. Инициализируемые переменные лучше объявлять в отдельных строках.

В данном разделе будут рассмотрены основные типы данных в С++, эти типы данных ещё называются встроенными. Язык программирования С++ является расширяемым языком программирования. Понятие расширяемый означает то, что кроме встроенных типов данных, можно создавать свои типы данных. Поэтому в С++ существует огромное количество типов данных. Мы будем изучать только основные из них.

Таблица 1 — Типы данных С++
Тип байт Диапазон принимаемых значений

целочисленный (логический) тип данных

bool 1 0 / 255

целочисленный (символьный) тип данных

char 1 0 / 255

целочисленные типы данных

short int 2 -32 768 / 32 767
unsigned short int 2 0 / 65 535
int 4
unsigned int 4 0 / 4 294 967 295
long int 4 -2 147 483 648 / 2 147 483 647
unsigned long int 4 0 / 4 294 967 295

типы данных с плавающей точкой

float 4 -2 147 483 648.0 / 2 147 483 647.0
long float 8
double 8 -9 223 372 036 854 775 808 .0 / 9 223 372 036 854 775 807.0

В таблице 1 представлены основные типы данных в С++. Вся таблица делится на три столбца. В первом столбце указывается зарезервированное слово, которое будет определять, каждое свой, тип данных. Во втором столбце указывается количество байт, которое отводится под переменную с соответствующим типом данных. В третьем столбце показан диапазон допустимых значений. Обратите внимание на то, что в таблице все типы данных расположены от меньшего к большему.

Тип данных bool

Первый в таблице — это тип данных bool целочисленный тип данных, так как диапазон допустимых значений — целые числа от 0 до 255. Но как Вы уже заметили, в круглых скобочках написано — логический тип данных, и это тоже верно. Так как bool используется исключительно для хранения результатов логических выражений. У логического выражения может быть один из двух результатов true или false . true — если логическое выражение истинно, false — если логическое выражение ложно.

Но так как диапазон допустимых значений типа данных bool от 0 до 255, то необходимо было как-то сопоставить данный диапазон с определёнными в языке программирования логическими константами true и false . Таким образом, константе true эквивалентны все числа от 1 до 255 включительно, тогда как константе false эквивалентно только одно целое число — 0. Рассмотрим программу с использованием типа данных bool .

// data_type.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include using namespace std; int main(int argc, char* argv) { bool boolean = 25; // переменная типа bool с именем boolean if (boolean) // условие оператора if cout << "true = " << boolean << endl; // выполнится в случае истинности условия else cout << "false = " << boolean << endl; // выполнится в случае, если условие ложно system("pause"); return 0; }

В строке 9 объявлена переменная типа bool , которая инициализирована значением 25. Теоретически после строки 9 , в переменной boolean должно содержаться число 25, но на самом деле в этой переменной содержится число 1. Как я уже говорил, число 0 — это ложное значение, число 1 — это истинное значение. Суть в том, что в переменной типа bool могут содержаться два значения — 0 (ложь) или 1 (истина). Тогда как под тип данных bool отводится целый байт, а это значит, что переменная типа bool может содержать числа от 0 до 255. Для определения ложного и истинного значений необходимо всего два значения 0 и 1. Возникает вопрос: «Для чего остальные 253 значения?».

Исходя из этой ситуации, договорились использовать числа от 2 до 255 как эквивалент числу 1, то есть истина. Вот именно по этому в переменной boolean содержится число 25 а не 1. В строках 10 -13 объявлен , который передает управление оператору в строке 11 , если условие истинно, и оператору в строке 13 , если условие ложно. Результат работы программы смотреть на рисунке 1.

True = 1 Для продолжения нажмите любую клавишу. . .

Рисунок 1 — Тип данных bool

Тип данных char

Тип данных char — это целочисленный тип данных, который используется для представления символов. То есть, каждому символу соответствует определённое число из диапазона . Тип данных char также ещё называют символьным типом данных, так как графическое представление символов в С++ возможно благодаря char . Для представления символов в C++ типу данных char отводится один байт, в одном байте — 8 бит, тогда возведем двойку в степень 8 и получим значение 256 — количество символов, которое можно закодировать. Таким образом, используя тип данных char можно отобразить любой из 256 символов. Все закодированные символы представлены в .

ASCII (от англ. American Standard Code for Information Interchange) - американский стандартный код для обмена информацией.

Рассмотрим программу с использованием типа данных char .

// symbols.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include using namespace std; int main(int argc, char* argv) { char symbol = "a"; // объявление переменной типа char и инициализация её символом "a" cout << "symbol = " << symbol << endl; // печать символа, содержащегося в переменной symbol char string = "сайт"; // объявление символьного массива (строки) cout << "string = " << string << endl; // печать строки system("pause"); return 0; }

Итак, в строке 9 объявлена переменная с именем symbol , ей присвоено значение символа "a" (ASCII код ). В строке 10 оператор cout печатает символ, содержащийся в переменной symbol . В строке 11 объявлен строковый массив с именем string , причём размер массива задан неявно. В строковый массив сохранена строка "сайт" . Обратите внимание на то, что, когда мы сохраняли символ в переменную типа char , то после знака равно мы ставили одинарные кавычки, в которых и записывали символ. При инициализации строкового массива некоторой строкой, после знака равно ставятся двойные кавычки, в которых и записывается некоторая строка. Как и обычный символ, строки выводятся с помощью оператора cout , строка 12 . Результат работы программы показан на рисунке 2.

Symbol = a string = сайт Для продолжения нажмите любую клавишу. . .

Рисунок 2 — Тип данных char

Целочисленные типы данных

Целочисленные типы данных используются для представления чисел. В таблице 1 их аж шесть штук: short int , unsigned short int , int , unsigned int , long int , unsigned long int . Все они имеют свой собственный размер занимаемой памяти и диапазоном принимаемых значений. В зависимости от компилятора, размер занимаемой памяти и диапазон принимаемых значений могут изменяться. В таблице 1 все диапазоны принимаемых значений и размеры занимаемой памяти взяты для компилятора MVS2010. Причём все типы данных в таблице 1 расположены в порядке возрастания размера занимаемой памяти и диапазона принимаемых значений. Диапазон принимаемых значений, так или иначе, зависит от размера занимаемой памяти. Соответственно, чем больше размер занимаемой памяти, тем больше диапазон принимаемых значений. Также диапазон принимаемых значений меняется в случае, если тип данных объявляется с приставкой unsigned — без знака. Приставка unsigned говорит о том, что тип данных не может хранить знаковые значения, тогда и диапазон положительных значений увеличивается в два раза, например, типы данных short int и unsigned short int .

Приставки целочисленных типов данных:

short приставка укорачивает тип данных, к которому применяется, путём уменьшения размера занимаемой памяти;

long приставка удлиняет тип данных, к которому применяется, путём увеличения размера занимаемой памяти;

unsigned (без знака)— приставка увеличивает диапазон положительных значений в два раза, при этом диапазон отрицательных значений в таком типе данных храниться не может.

Так, что, по сути, мы имеем один целочисленный тип для представления целых чисел — это тип данных int . Благодаря приставкам short , long , unsigned появляется некоторое разнообразие типов данных int , различающихся размером занимаемой памяти и (или) диапазоном принимаемых значений.

Типы данных с плавающей точкой

В С++ существуют два типа данных с плавающей точкой: float и double . Типы данных с плавающей точкой предназначены для хранения чисел с плавающей точкой. Типы данных float и double могут хранить как положительные, так и отрицательные числа с плавающей точкой. У типа данных float размер занимаемой памяти в два раза меньше, чем у типа данных double , а значит и диапазон принимаемых значений тоже меньше. Если тип данных float объявить с приставкой long , то диапазон принимаемых значений станет равен диапазону принимаемых значений типа данных double . В основном, типы данных с плавающей точкой нужны для решения задач с высокой точностью вычислений, например, операции с деньгами.

Итак, мы рассмотрели главные моменты, касающиеся основных типов данных в С++. Осталось только показать, откуда взялись все эти диапазоны принимаемых значений и размеры занимаемой памяти. А для этого разработаем программу, которая будет вычислять основные характеристики всех, выше рассмотренных, типов данных.

// data_types.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include // библиотека манипулирования вводом/выводом #include // заголовочный файл математических функций #include using namespace std; int main(int argc, char* argv) { cout << " data type " << "byte" << " " << " max value " << endl // заголовки столбцов << "bool = " << sizeof(bool) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных bool*/ << (pow(2,sizeof(bool) * 8.0) - 1) << endl << "char = " << sizeof(char) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных char*/ << (pow(2,sizeof(char) * 8.0) - 1) << endl << "short int = " << sizeof(short int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных short int*/ << (pow(2,sizeof(short int) * 8.0 - 1) - 1) << endl << "unsigned short int = " << sizeof(unsigned short int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных unsigned short int*/ << (pow(2,sizeof(unsigned short int) * 8.0) - 1) << endl << "int = " << sizeof(int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных int*/ << (pow(2,sizeof(int) * 8.0 - 1) - 1) << endl << "unsigned int = " << sizeof(unsigned int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных unsigned int*/ << (pow(2,sizeof(unsigned int) * 8.0) - 1) << endl << "long int = " << sizeof(long int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных long int*/ << (pow(2,sizeof(long int) * 8.0 - 1) - 1) << endl << "unsigned long int = " << sizeof(unsigned long int) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных undigned long int*/ << (pow(2,sizeof(unsigned long int) * 8.0) - 1) << endl << "float = " << sizeof(float) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных float*/ << (pow(2,sizeof(float) * 8.0 - 1) - 1) << endl << "double = " << sizeof(double) << " " << fixed << setprecision(2) /*вычисляем максимальное значение для типа данных double*/ << (pow(2,sizeof(double) * 8.0 - 1) - 1) << endl; system("pause"); return 0; }

Данная программа выложена для того, чтобы Вы смогли просмотреть характеристики типов данных в своей системе. Не стоит разбираться в коде, так как в программе используются управляющие операторы, которые Вам, вероятнее всего, ещё не известны. Для поверхностного ознакомления с кодом программы, ниже поясню некоторые моменты. Оператор sizeof() вычисляет количество байт, отводимое под тип данных или переменную. Функция pow(x,y) возводит значение х в степень y , данная функция доступна из заголовочного файла . Манипуляторы fixed и setprecision() доступны из заголовочного файла . Первый — fixed , передаёт в поток вывода значения в фиксированной форме. Манипулятор setprecision(n) отображает n знаков после запятой. Максимальное значение некоторого типа данных вычисляется по такой формуле:

Max_val_type = 2^(b * 8 - 1) - 1; // для типов данных с отрицательными и положительными числами // где, b - количество байт выделяемое в памяти под переменную с таким типом данных // умножаем на 8, так как в одном байте 8 бит // вычитаем 1 в скобочках, так как диапазон чисел надо разделить надвое для положительных и отрицательных значений // вычитаем 1 в конце, так как диапазон чисел начинается с нуля // типы данных с приставкой unsigned max_val_type = 2^(b * 8) - 1; // для типов данных только с положительными числами // пояснения к формуле аналогичные, только в скобочка не вычитается единица

Пример работы программы можно увидеть на рисунке 3. В первом столбце показаны основные типы данных в С++, во втором столбце размер памяти, отводимый под каждый тип данных и в третьем столбце — максимальное значение, которое может содержать соответствующий тип данных. Минимальное значение находится аналогично максимальному. В типах данных с приставкой unsigned минимальное значение равно 0.

Data type byte max value bool = 1 255.00 char = 1 255.00 short int = 2 32767.00 unsigned short int = 2 65535.00 int = 4 2147483647.00 unsigned int = 4 4294967295.00 long int = 4 2147483647.00 unsigned long int = 4 4294967295.00 float = 4 2147483647.00 double = 8 9223372036854775808.00 Для продолжения нажмите любую клавишу. . .

Рисунок 3 — Типы данных С++

Если, например, переменной типа short int присвоить значение 33000, то произойдет переполнение разрядной сетки, так как максимальное значение в переменной типа short int это 32767. То есть в переменной типа short int сохранится какое-то другое значение, скорее всего будет отрицательным. Раз уж мы затронули тип данных int ,стоит отметить, что можно опускать ключевое слово int и писать, например, просто short . Компилятор будет интерпретировать такую запись как short int . Тоже самое относится и к приставкам long и unsigned . Например:

// сокращённая запись типа данных int short a1; // тоже самое, что и short int long a1; // тоже самое, что и long int unsigned a1; // тоже самое, что и unsigned int unsigned short a1; // тоже самое, что и unsigned short int

Теги: С++ типы данных, auto, decltype, автоматический вывод типов

Типы данных

К ак и в си, переменные в С++ должны иметь валидное имя. То есть, состоять из чисел, букв и знака подчёркивания, не должны начинаться с цифры и не должны совпадать со служебными словами, которых теперь стало больше

alignas alignof and and_eq
asm auto bitand bitor
bool break case catch
char char16_t char32_t class
compl const constexpr const_cast
continue decltype default delete
do double dynamic_cast else
enum explicit export extern
false float for friend
goto if inline int
long mutable namespace new
noexcept not not_eq nullptr
operator or or_eq private
protected public register reinterpret_cast
return short signed sizeof
static static_assert static_cast struct
switch template this thread_local
throw true try typedef
typeid typename union unsigned
using virtual void volatile
wchar_t while xor xor_eq

Как и си, С++ регистрозависимый язык.

Основные типы данных

Б азовые типы данных в C++ можно разбить на несколько групп

Знаковый тип. Переменные знакового типа могут использоваться для хранения одного символа. Самый простой тип char, размер которого равен 1 байт. Также имеются типы для представления знаков, размером больше одного байта

Вообще-то эти типы есть и в си, мы не останавливались подробно на изучении представления строк.

Целочисленные типы данных. Как и в си, могут обладать модификаторами signed и unsigned. Как и в си, основными типами являются char, int, long и long long. Ничего нового здесь не появилось.

Числа с плавающей точкой. Представлены типами float, double и long double. Ничего нового по сравнению с си.

Все описанные выше типы называют также арифметическими. Кроме них существует ещё пустой тип – void (также ничего нового по сравнению с си) и нулевой указатель. Теперь, вместо NULL с его удивительными свойствами, появился новый фундаментальный тип nullptr_t с единственным значением nullptr, который хранит нулевой указатель и равен только сам себе. При этом, он может быть приведён к нулевому указателю нужного типа.

В си++ введён булев тип. Он хранит всего два возможных значения true и false.

Си++ поддерживает также множество составных типов данных, которые будут рассмотрены позднее.

Объявление и инициализация переменных

В С++ переменные могут быть объявлены в любом месте внутри функции, а не только в самом начале блока кода В том числе, переменные могут быть объявлены и внутри цикла for.

Float a; float b; float sum; float step; a = 3.0f; b = 4.3f; sum = 0.0f; step = 0.05f; for (float i = a; i < b; i += step) { sum += i * i; } float mid = sum / (b - a) / step;

Инициализировать переменные можно при создании как в си

Int x = 0;

либо, используя конструктор

Int x(0); double d(3.2);

Кроме того, в С++ 2011 появилась т.н. uniform initialization, универсальная инициализация, которая позволяет использовать один синтаксис для инициализации любых объектов

Struct Point { int x; int y; }; struct Point position = { 3, 4 }; Point *pt = new Point{6, 8}; int length{5};

Вывод типов

В си++ 2011 служебное слово auto используется для автоматического определения типа переменных. Часто тип переменной может быть определён, исходя из правой части инициализации. В том случае, когда компилятор может однозначно определить тип, его можно задавать с помощью служебного слова auto:

Auto x = 3; //эквивалентно int x = 3; auto point = new Point; //эквивалентно Point *point = new Point

Кроме этого, есть возможность задавать тип переменной по уже имеющемуся типу, с помощью служебного слова decltype

Int intX = 42; decltype(intX) intY = 33; //эквивалентно int intY = 33; auto pt1 = new Point; decltype(pt1) p2 = new Point{2, 6}; //эквивалентно //Point *pt1 = new Point; //Point *pt2 = new Point{2, 6}

Строки

В С++ нет базового типа строка. Однако есть стандартная библиотека string, которая предоставляет класс для работы со строками.

#include #include void main() { std::string first_name = "Vasya"; std::string last_name = { "Pupkin" }; //конкатенация строк auto full_name = first_name + " " + last_name; std::string *department = new std::string("Department of copying and scanning"); std::cout << full_name << std::endl; //сравнение строк std::string a = "A"; std::string b = "B"; if (first_name.compare(last_name) > 0) { std::cout << a + " > " + b << std::endl; } else { std::cout << a + " < " + b << std::endl; } //подстрока std::string subs = department->substr(0, 10); std::cout << subs << std::endl; //замена подстроки std::cout << last_name.replace(0, 1, "G") << std::endl; //вставка std::string new_department = department->insert(department->length(), " and shreddering"); std::cout << new_department << std::endl; delete department; system("pause"); }

Со стандартной библиотекой string познакомимся поздее более подробно.

Типы данных

Типы данных имеют особенное значение в C#, поскольку это строго типизированный язык. Это означает, что все операции подвергаются строгому контролю со стороны компилятора на соответствие типов, причем недопустимые операции не компилируются. Следовательно, строгий контроль типов позволяет исключить ошибки и повысить надежность программ. Для обеспечения контроля типов все переменные, выражения и значения должны принадлежать к определенному типу. Такого понятия, как "бестиповая" переменная, в данном языке программирования вообще не существует. Более того, тип значения определяет те операции, которые разрешается выполнять над ним. Операция, разрешенная для одного типа данных, может оказаться недопустимой для другого.

В C# имеются две общие категории встроенных типов данных: типы значений и ссылочные типы . Они отличаются по содержимому переменной. Концептуально разница между ними состоит в том, что тип значения (value type) хранит данные непосредственно, в то время как ссылочный тип (reference type) хранит ссылку на значение.

Эти типы сохраняются в разных местах памяти: типы значений сохраняются в области, известной как стек , а ссылочные типы - в области, называемой управляемой кучей .

Давайте разберем типы значений.

Целочисленные типы

В C# определены девять целочисленных типов: char, byte, sbyte, short, ushort, int, uint, long и ulong . Но тип char применяется, главным образом, для представления символов и поэтому рассматривается отдельно. Остальные восемь целочисленных типов предназначены для числовых расчетов. Ниже представлены их диапазон представления чисел и разрядность в битах:

Целочисленные типы C#
Тип Тип CTS Разрядность в битах Диапазон
byte System.Byte 8 0:255
sbyte System.SByte 8 -128:127
short System.Int16 16 -32768: 32767
ushort System.UInt16 16 0: 65535
int System.Int32 32 -2147483648: 2147483647
uint System.UInt32 32 0: 4294967295
long System.Int64 64 -9223372036854775808: 9223372036854775807
ulong System.UInt64 64 0: 18446744073709551615

Как следует из приведенной выше таблицы, в C# определены оба варианта различных целочисленных типов: со знаком и без знака. Целочисленные типы со знаком отличаются от аналогичных типов без знака способом интерпретации старшего разряда целого числа. Так, если в программе указано целочисленное значение со знаком, то компилятор C# сгенерирует код, в котором старший разряд целого числа используется в качестве флага знака. Число считается положительным, если флаг знака равен 0, и отрицательным, если он равен 1.

Отрицательные числа практически всегда представляются методом дополнения до двух, в соответствии с которым все двоичные разряды отрицательного числа сначала инвертируются, а затем к этому числу добавляется 1.

Вероятно, самым распространенным в программировании целочисленным типом является тип int . Переменные типа int нередко используются для управления циклами, индексирования массивов и математических расчетов общего назначения. Когда же требуется целочисленное значение с большим диапазоном представления чисел, чем у типа int, то для этой цели имеется целый ряд других целочисленных типов.

Так, если значение нужно сохранить без знака, то для него можно выбрать тип uint , для больших значений со знаком - тип long , а для больших значений без знака - тип ulong . В качестве примера ниже приведена программа, вычисляющая расстояние от Земли до Солнца в сантиметрах. Для хранения столь большого значения в ней используется переменная типа long:

Using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string args) { long result; const long km = 149800000; // расстояние в км. result = km * 1000 * 100; Console.WriteLine(result); Console.ReadLine(); } } }

Всем целочисленным переменным значения могут присваиваться в десятичной или шестнадцатеричной системе обозначений. В последнем случае требуется префикс 0x:

Long x = 0x12ab;

Если возникает какая-то неопределенность относительно того, имеет ли целое значение тип int, uint, long или ulong, то по умолчанию принимается int. Чтобы явно специфицировать, какой другой целочисленный тип должно иметь значение, к числу можно добавлять следующие символы:

Uint ui = 1234U; long l = 1234L; ulong ul = 1234UL;

U и L можно также указывать в нижнем регистре, хотя строчную L легко зрительно спутать с цифрой 1 (единица).

Типы с плавающей точкой

Типы с плавающей точкой позволяют представлять числа с дробной частью. В C# имеются две разновидности типов данных с плавающей точкой: float и double . Они представляют числовые значения с одинарной и двойной точностью соответственно. Так, разрядность типа float составляет 32 бита, что приближенно соответствует диапазону представления чисел от 5E-45 до 3,4E+38. А разрядность типа double составляет 64 бита, что приближенно соответствует диапазону представления чисел от 5E-324 до 1,7Е+308.

Тип данных float предназначен для меньших значений с плавающей точкой, для которых требуется меньшая точность. Тип данных double больше, чем float, и предлагает более высокую степень точности (15 разрядов).

Если нецелочисленное значение жестко кодируется в исходном тексте (например, 12.3), то обычно компилятор предполагает, что подразумевается значение типа double. Если значение необходимо специфицировать как float, потребуется добавить к нему символ F (или f):

Float f = 12.3F;

Десятичный тип данных

Для представления чисел с плавающей точкой высокой точности предусмотрен также десятичный тип decimal , который предназначен для применения в финансовых расчетах. Этот тип имеет разрядность 128 бит для представления числовых значений в пределах от 1Е-28 до 7,9Е+28. Вам, вероятно, известно, что для обычных арифметических вычислений с плавающей точкой характерны ошибки округления десятичных значений. Эти ошибки исключаются при использовании типа decimal, который позволяет представить числа с точностью до 28 (а иногда и 29) десятичных разрядов. Благодаря тому что этот тип данных способен представлять десятичные значения без ошибок округления, он особенно удобен для расчетов, связанных с финансами:

Using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string args) { // *** Расчет стоимости капиталовложения с *** // *** фиксированной нормой прибыли*** decimal money, percent; int i; const byte years = 15; money = 1000.0m; percent = 0.045m; for (i = 1; i

Результатом работы данной программы будет:

Символы

В C# символы представлены не 8-разрядным кодом, как во многих других языках программирования, например С++ , а 16-разрядным кодом, который называется юникодом (Unicode) . В юникоде набор символов представлен настолько широко, что он охватывает символы практически из всех естественных языков на свете. Если для многих естественных языков, в том числе английского, французского и немецкого, характерны относительно небольшие алфавиты, то в ряде других языков, например китайском, употребляются довольно обширные наборы символов, которые нельзя представить 8-разрядным кодом. Для преодоления этого ограничения в C# определен тип char , представляющий 16-разрядные значения без знака в пределах от 0 до 65 535. При этом стандартный набор символов в 8-разрядном коде ASCII является подмножеством юникода в пределах от 0 до 127. Следовательно, символы в коде ASCII по-прежнему остаются действительными в C#.

Типы данных в Си — класс данных, значения которых имеют схожие характеристики. Тип определяет внутреннее представление данных в памяти. Самые основные типы данных: логический, целочисленный, числа с плавающей точкой, строковые, указатели.

При динамической типизации переменная связывается с типом на момент инициализации. Получается, что переменная в разных участках кода может иметь разные типы. Динамическую типизацию поддерживают Java Script, Python, Ruby, PHP.

Статическая типизация является противоположностью динамической. При объявлении переменная получает тип, который не меняется в дальнейшем. Языки Си и Си++ являются именно такими. Этот способ наиболее удобный для написания сложного кода, а на стадии компиляции исключается много ошибок.

Языки неформально делятся на сильнотипизированный и слаботипизированный. Сильная типизация подразумевает, что компилятор выдаст ошибку при несовпадении ожидаемого и фактического типов.

x = 1 + “2”; //ошибка — нельзя прибавить к числу символьный знак

Пример слабой типизации.

Проверка согласования типов осуществляется системой типобезопасности. Ошибка типизации возникает, например, при попытке использовать число как функцию. Существуют нетипизированные языки. В противоположность типизированным, они позволяют осуществлять любые операции над каждым объектом.

Классы памяти

Переменные, независимо от их типа, имеют свою область видимости и время существования.

Классы памяти:

  • auto;
  • static;
  • extern;
  • register.

Все переменные в языке Си по умолчанию являются локальными. Они могут использоваться только внутри функции или блока. По завершении функции их значение уничтожается.

Статическая переменная также является локальной, но вне своего блока может иметь другое значение, а между вызовами функции значение сохраняется.

Внешняя переменная является глобальной. Она доступна в любой части кода и даже в другом файле.

Спецификаторы типов данных в Си могут не указываться в таких случаях:

  1. Все переменные внутри блока не являются переменными, соответственно, если предполагается использование именно этого класса памяти, то спецификатор auto не указывается.
  2. Все функции, объявленные вне блока или функции, являются по умолчанию глобальными, поэтому спецификатор extern не обязателен.

Для указания простых типов указываются спецификаторы int, char, float или double. К переменным могут подставляться модификаторы unsigned (беззнаковый), signed (знаковый), short, long, long long.

По умолчанию все числа являются знаковыми, соответственно, могут находиться в диапазоне только положительных чисел. Чтобы определить переменную типа char как знаковую, пишется signed char. Long, long long и short указывают, как много места в памяти отводится для хранения. Наибольшее — long long, наименьшее — short.

Char — самый маленький тип данных в Си. Для хранения значений выделяется всего 1 байт памяти. Переменной типа character обычно присваиваются символы, реже — цифры. Символьные значения берутся в кавычки.

Тип int хранит целые числа, его размер не определен — занимает до 4 байт памяти, в зависимости от архитектуры компьютера.

Явное преобразование беззнаковой переменной задается так:

Неявное выглядит так:

Float и double определяют числа с точкой. Числа float представляются в виде -2.3 или 3.34. Double используется для большей точности — после разделителя целой и дробной части указывается больше цифр. Этот тип занимает больше места в памяти, чем float.

Void имеет пустое значение. Он определяет функции, которые ничего не возвращают. С помощью этого спецификатора указывается пустое значение в аргументах методов. Указатели, которые могут принимать любой тип данных, также определяются как void.

Логический тип Bool

Применяется в проверках условий и циклах. Имеет всего два значения:

  • истина;
  • ложь.

Булевые значения могут преобразовываться в значение типа int. True эквивалентно единице, false — нулю. Преобразование типов предусмотрено только между bool и int, в противном случае компилятор выдаст ошибку.

if (x) { //Error: «Cannot implicitly convert type ‘int’ to ‘bool"»

if (x != 0) // The C# way

Строки и массивы

Массивы относятся к сложными типам даным в Си. ЯП не работает со строками так же, как это делает Джаваскрипт или Руби. В Си все строки являются массивами элементов символьного значения. Строки оканчиваются нулевым байтом “