Линии связи и каналы передачи данных. Каналы связи: виды, характеристики На какие виды делятся каналы передачи связи

Каналы связи (КС) служат для передачи сигнала и являются общим звеном любой системы передачи информации.

По физической природе каналы связи подразделяются на механические, используемые для передачи материальных носителей информации, акустические , оптические и электрические , передающие соответственно звуковые, световые и электрические сигналы.

Электрические и оптические каналы связи в зависимости от способа передачи сигналов можно подразделить на проводные, использующие для передачи сигналов физические проводники (электрические провода, кабели, световоды), и беспроводные, использующие для передачи сигналов электромагнитные волны (радиоканалы, инфракрасные каналы).

По форме представления передаваемой информации каналы связи делятся на аналоговые , по которым информация передается в непрерывной форме, т.е. в виде непрерывного ряда значений какой-либо физической величины, и цифровые, передающие информацию, представленную в виде цифровых (дискретных, импульсных) сигналов различной физической природы.

В зависимости от возможных направлений передачи информации каналы связи подразделяются на симплексные, позволяющие передавать информацию только в одном направлении; полудуплексные , обеспечивающие попеременную передачу информации как в прямом, так и в обратном направлениях; дуплексные , позволяющие вести передачу информации одновременно в прямом и обратном направлениях.

Каналы связи бывают коммутируемые , которые создаются из отдельных участков (сегментов) только на время передачи по ним информации, а по окончании передачи такой канал ликвидируется (разъединяется), и некоммутируемые (выделенные), создаваемые на длительное время и имеющие постоянные характеристики по длине, пропускной способности, помехозащищенности.

Широко используемые в автоматизированных системах обработки информации и управления электрические проводные каналы связи различаются по пропускной способности:

низкоскоростные, скорость передачи информации в которых от 50 до 200 бит/с. Это телеграфные каналы связи, как коммутируемые (абонентский телеграф), так и некоммутируемые;

среднескоростные, использующие аналоговые (телефонные) каналы связи; скорость передачи в них от 300 до 9600 бит/с, а в новых стандартах V.32 - V.34 Международного консультативного комитета по телеграфии и телефонии (МККТТ) и от 14400 до 56 000 бит/с;

высокоскоростные (широкополосные), обеспечивающие скорость передачи информации свыше 56 000 бит/с.

Для передачи информации в низкоскоростных и среднескоростных КС физической средой обычно являются проводные линии связи: группы либо параллельных, либо скрученных проводов, называемых витая пара. Она представляет собой изолированные проводники, попарно свитые между собой для уменьшения как перекрестных электромагнитных наводок, так и затухания сигнала при передаче на высоких частотах.


Для организации высокоскоростных (широкополосных) КС используются различные кабели:

Экранированные с витыми парами из медных проводов;

Неэкранированные с витыми парами из медных проводов;

Коаксиальные;

Оптоволоконные.

STP-кабели (экранированные с витыми парами из медных проводов) имеют хорошие технические характеристики, но неудобны в работе и дороги.

UTP-кабели (неэкранированные с витыми парами из медных проводов) довольно широко используются в системах передачи данных, в частности в вычислительных сетях.

Выделяют пять категорий витых пар: первая и вторая категории используются при низкоскоростной передаче данных; третья, четвертая и пятая - при скоростях передачи соответственно до 16,25 и 155 Мбит/с. Эти кабели обладают хорошими техническими характеристиками, сравнительно недороги, удобны в работе, не требуют заземления.

Коаксиальный кабель представляет собой медный проводник, покрытый диэлектриком и окруженный свитой из тонких медных проводников экранирующей защитной оболочкой. Скорость передачи данных по коаксиальному кабелю довольно высокая (до 300 Мбит/с), но он недостаточно удобен в работе и имеет высокую стоимость.

Оптоволоконный кабель (рис. 8.2) состоит из стеклянных или пластиковых волокон диаметром несколько микрометров (свето-ведущая жила) с высоким показателем преломления п с, окруженных изоляцией с низким показателем преломления n 0 и помещенных в защитную полиэтиленовую оболочку. На рис. 8.2, а показано распределение показателя преломления по сечению оптоволоконного кабеля, а на рис. 8.2, б - схема распространения лучей. Источником излучения, распространяемого по оптоволоконному кабелю, является светодиод или полупроводниковый лазер, приемником излучения - фотодиод, который преобразует световые сигналы в электрические. Передача светового луча по волокну основана на принципе полного внутреннего отражения луча от стенок световедущей жилы, за счет чего обеспечивается минимальное затухание сигнала.

Рис. 8.2. Распространение лучей по оптоволоконному кабелю:

а - распределение показателя преломления по сечению оптоволоконного кабеля;

б - схема распространения лучей

Кроме того, оптоволоконные кабели обеспечивают защиту передаваемой информации от внешних электромагнитных полей и высокую скорость передачи до 1000 Мбит/с. Кодирование информации осуществляется с помощью аналоговой, цифровой или импульсной модуляции светового луча. Оптоволоконный кабель достаточно дорогой и используется обычно лишь для прокладки ответственных магистральных каналов связи, например, проложенный по дну Атлантического океана кабель связывает Европу с Америкой. В вычислительных сетях оптоволоконный кабель используется на наиболее ответственных участках, в частности, в Internet. По одному толстому магистральному оптоволоконному кабелю можно одновременно организовать несколько сотен тысяч телефонных, несколько тысяч видеотелефонных и около тысячи телевизионных каналов связи.

Высокоскоростные КС организуются на базе беспроводных радиоканалов.

Радиоканал - это беспроводный канал связи, прокладываемый через эфир. Для формирования радиоканала используются радиопередатчик и радиоприемник. Скорости передачи данных по радиоканалу практически ограничиваются полосой пропускания приемопередающей аппаратуры. Радиоволновый диапазон определяется используемой для передачи данных частотной полосой электромагнитного спектра. В табл. 8.1 представлены диапазоны радиоволн и соответствующие им частотные полосы.

Для коммерческих телекоммуникационных систем чаще всего используются частотные диапазоны 902 - 928 МГц и 2,40 - 2,48 ГГц.

Беспроводные каналы связи обладают плохой помехозащищенностью, но обеспечивают пользователю максимальную мобильность и быстроту реакции.

Телефонные линии связи наиболее разветвлены и распространены. Они осуществляют передачу звуковых (тональных) и факсимильных сообщений. На базе телефонной линии связи построены информационно-справочные системы, системы электронной почты и вычислительных сетей. На базе телефонных линий могут быть созданы аналоговые и цифровые каналы передачи информации.

В аналоговых телефонных линиях телефонный микрофон преобразует звуковые колебания в аналоговый электрический сигнал, который и передается по абонентской линии в АТС. Требуемая для передачи человеческого голоса полоса частот составляет примерно 3 кГц (диапазон 300 Гц -3,3 кГц). Передача сигналов вызова производится по тому же каналу, что и передача речи.

В цифровых каналах связи аналоговый сигнал перед вводом дискретизируется - преобразуется в цифровую форму: каждые 125 мкс (частота дискретизации равна 8 кГц) текущее значение аналогового сигнала отображается 8-разрядным двоичным кодом.

Таблица 8.1

Диапазоны радиоволн и соответствующие им частотные полосы

КАНАЛЫ СВЯЗИ


1. Классификация и характеристики канала связи

Канал связи – это совокупность средств, предназначенных для передачи сигналов (сообщений).

Для анализа информационных процессов в канале связи можно использовать его обобщенную схему, приведенную на рис. 1.


На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1. По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведение времени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к. , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2. Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3. Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1. Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2. Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь. Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины. Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X), (2)

где: I (Y, X) – взаимная информация, т.е. количество информации, содержащееся в Y относительно X; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x).

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .


Для организации передачи данных необходимо использовать линии и каналы связи , которые осуществляют коммуникацию между компьютерами, телефонами, телеграфами и другими средствами связи.

Передаваемая информация находится в физической среде, которая может состоять из различных типов кабелей и проводов, а также окружающего пространства.

Чем отличаются каналы связи от линий связи

Несмотря на то, что оба понятия часто отождествляются, они имеют некоторые различия, о которых нужно знать для построения корректной информационной коммуникации.

По каналам связь передается в одну сторону или в две, если обмен происходит между приемником и передатчиком.

Линии связи, в свою очередь, образовываются от соединения нескольких каналов, также в них может быть только один канал.

Существуют такие линии связи:

  • Проводные;

  • Кабельные;

  • Беспроводные.

Рассмотрим детальнее каждый тип линий и узнаем об их возможностях, достоинствах и недостатках.

Проводные (воздушные) линии связи

Эти линии могут использоваться для передачи телеграфного, телефонного или компьютерного сигнала. Они состоят из проводов, через которые и осуществляется обмен данными. Этот тип связи подходит для передачи цифровых и аналоговых сигналов, потому его популярность достаточно высокая.

К недостаткам такого подключения относится сравнительно невысокая скорость передачи сигнала и низкая степень защищенности от помех.

Также возможно банальное самовольное подключение недобросовестных абонентов, что ведет к снижению качества передачи данных и финансовым потерям компаний-вещателей.

Кабельные линии связи

Структура кабеля может быть разной, но в основном все они состоят из групп проводников, которые обработаны надежной изоляцией.

Для обмена данными в компьютерных сетях используются такие типы кабелей:

  • Витая пара – состоит из двух проводов, изготовленных из меди, которые свиты друг с другом и покрыты неэкранированной или экранированной оболочкой. Такой способ соединения проводников помогает повысить помехоустойчивость, возможно, что в один кабель заключается сразу несколько витых пар проводов. Такое подключение самое дешевое и доступное, монтаж кабелей достаточно простой, что и приводит к несанкционированному подключению к сетям все тех же недобросовестных абонентов.

  • Коаксиальный кабель – состоит из центрального проводника, роль которого исполняет медный провод, и проводящего экрана, чаще всего в его качестве используется алюминиевая фольга или медная оплетка. Между основным проводником и экраном располагается изолирующий материал, внешняя часть экрана также покрыта изоляцией. Этот метод подключения более затратный и трудоемкий, потому несанкционированных подключений меньше. Для таких линий характерна хорошая защищенность от помех и высокая скорость передачи информации.

  • Оптоволоконный кабель – похож по своему строению с коаксиальным, но вместо медного проводника в этом кабеле используется тонкое стекловолокно, роль внутренней изоляции выполняет пластиковая или стеклянная оболочка, которая не позволяет свету выходить, она образовывает полное внутренне отражение. Примечательно, что через волокно сигналы могут проходить исключительно в одну сторону, именно по этой причине в кабелях они расположены попарно. Монтаж таких линий связи очень трудоемкий, сам кабель достаточно чувствительный к повреждениям, но при этом он обеспечивает высочайшую скорость передачи сигнала до 3 Гбит/с. При условии использования оптоволоконного кабеля на стороне передачи должен использоваться преобразователь электрического сигнала в световой, а на стороне приема – преобразователь светового сигнала в электрический.

Беспроводные каналы связи

Линии и каналы связи могут быть построены на работе беспроводных наземных или спутниковых радиоканалов.

Радиорелейные каналы – это группа станций-ретрансляторов, которые располагаются в определенном порядке на определенном отдалении друг от друга.

Станции и ретрансляторы используются в сфере сотовой связи и для передачи других видов сигналов в рамках одного города или региона.

Спутниковая связь обеспечивается спутниками, которые располагаются на земной орбите и являются ретрансляторами. Сигнал от наземной передающей станции идет к спутнику, а от спутника он передается на наземную принимающую станцию.

Такой метод коммуникации позволяет обеспечивать связью жителей самых отдаленных частей планеты, поскольку спутники чаще всего запускаются не по одному, а группами.

Все ретрансляторы располагаются на орбите в некотором отдалении друг от друга, потому вместе они могут охватить почти весь земной шар.

Примеры линий и каналов связи на выставке

Узнать, какие линии и каналы связи используют современные компании, можно на специализированной выставке «Связь» , которая состоится в ЦВК «Экспоцентр».

Выставка будет посвящена новинкам в сфере ИТ. На мероприятии будут представлены последние технические решения для обеспечения коммуникации.

Читайте другие наши статьи:

Линия связи и канал связи - это не одно и то же.

Линия связи (ЛС) - этофизическая среда , по которой передаются информационные сигналы. В одной линии связи может быть организовано несколько каналов связи путем временного, частотного кодового и других видов разделения - тогда говорят о логических (виртуальных) каналах. Если канал полностью монополизирует линию связи, то он может называться физическим каналом и в этом случае совпадает с линией связи. Хотя можно, например, говорить об аналоговом ил л цифровом канале связи, но абсурдно говорить об аналоговой или цифровой линии связи, ибо линия - лишь физическая среда, в которой могут быть образованы каналы связи разного типа. Тем не менее, даже говоря о физической многоканальной линии, ее часто называют каналом связи. Л С являются обязательным звеном любой системы передачи информации.

Рис. 15. 2. Классификация каналов Связи

Классификация каналов связи (КС) показана на рис. 15. 2. По физической природе ЛС и КС на их основе делятся на:

    механические - используются для передачи материальных носителей информации

    акустические - передают звуковой сигнал;

    оптические - передают световой сигнал;

    электрические - передают электрический сигнал.

Электрические и оптические КС могут быть:

    проводными, использующими для передачи сигналов проводниковые линии связи (электрические провода, кабели, световоды и т. д.);

    беспроводными (радиоканалы, инфракрасные каналы и т. д.), использующими для передачи сигналов электромагнитные волны, распространяющиеся по эфиру.

По форме представления передаваемой информации КС делятся на:

    аналоговые - по аналоговым каналам передается информация, представленная в непрерывной форме, то есть в виде непрерывного ряда значений какой-либо физической величины;

    цифровые - по цифровым каналам передается информация, представленная в виде цифровых (дискретных, импульсных) сигналов той или иной физической природы.

В зависимости от возможных направлений передачи информации различают:

    симплексные КС, позволяющие передавать информацию только в одном направлении;

    полудуплексные КС, обеспечивающие попеременную передачу информации в прямом и обратном направлениях;

    дуплексные КС, позволяющие вести передачу информации одновременно и в прямом, и в обратном направлениях.

Каналы связи могут быть, наконец:

    коммутируемыми;

    некоммутируемыми.

Коммутируемые каналы создаются из отдельных участков (сегментов) только на время передачи по ним информации; по окончании передачи такой канал ликвидируется (разъединяется).

Некоммутируемые (выделенные) каналы создаются на длительное время и имеют постоянные характеристики по длине, пропускной способности, помехозащищенности.

По пропускной способности их можно разделить на:

    низкоскоростные КС, скорость передачи информации в которых от 50 до 200 бит/с; это телеграфные КС, как коммутируемые (абонентский телеграф), так и некоммутируемые;

    среднескоростные КС, например аналоговые (телефонные) КС; скорость передачи в них от 300 до 9600 бит/с, а в новых стандартах V 90-V. 92 Международного консультативного комитета по телеграфии и телефонии (МККТТ) и до 56 000 бит/с

    высокоскоростные (широкополосные) КС, обеспечивающие скорость передачи информации выше 56 000 бит/с.

Следует особо отметить, что телефонный КС является более узкополосным, нежели телеграфный, но скорость передачи данных по нему выше благодаря обязательному наличию модема, существенно снижающего F с передаваемого сигнала. При простом кодировании максимально достижимая скорость передачи данных по аналоговым каналам не превосходит 9600 бод = 9600 бит/с. Применяемые в настоящее время сложные протоколы кодирования передаваемых данных используют не два, а несколько значений параметра сигнала для отображения элемента данных и позволяют достичь скорости передачи данных по аналоговым телефонным линиям связи 56 кбит/с = 9600 бод.

По цифровым КС, организованным на базе телефонных линий, скорость передача данных благодаря уменьшению F с и увеличению Н с оцифрованного сигнала также: может быть выше (до 64 кбит/с), а при мультиплексировании нескольких цифровых каналов в один в таком составном КС скорость передачи может удваиваться, утраиваться и т. д. ; существуют подобные каналы со скоростями десятки и сотни мегабит в секунду.

Физической средой передачи информации в низкоскоростных и среднескоростных КС обычно являются проводные линии связи: группы либо параллельных, либо скрученных ("витая пара") проводов.

Для организации широкополосных КС используются различные кабели, в частности:

    неэкранированные с витыми парами из медных проводов (Unshielded Twisted Pair - UTP);

    экранированные с витыми парами из медных проводов (Shielded Twisted Pair - STP);

    волоконно-оптические (Fiber Optic Cable - FOC);

    коаксиальные (Coaxial Cable - CC);

    беспроводные радиоканалы.

Витая пара - это изолированные проводники, попарно свитые между собой для уменьшения перекрестных наводок между проводниками. Такой кабель, состоящий обычно из небольшого количества витых пар (иногда даже двух), характеризуется меньшим затуханием сигнала при передаче на высоких частотах и меньшей чувствительностью к электромагнитным наводкам, чем параллельная пара проводов.

UTP-кабели чаще других используются в системах передачи данных, в частности в вычислительных сетях. Выделяют пять категорий витых пар UTP: первая и вторая категории используются при низкоскоростной передаче данных; третья, четвертая и пятая - при скоростях передачи соответственно до 16, 25 и 155 Мбит/с (а при использовании стандарта технологии Gigabit Ethernet на витой паре, введенного в 1999 году, и до 1000 Мбит/с). При хороших технических характеристиках эти кабели сравнительно недороги, они удобны в работе, не требуют заземления.

STP-кабели обладают хорошими техническими характеристиками, но имеют высокую стоимость, жестки и неудобны в работе, требуют заземления экрана. Они делятся на типы: Туре 1, Туре 2, Туре 3, Туре 5, Туре 9. Из них Туре 3 определяет характеристики неэкранированного телефонного кабеля, а Туре 5 - волоконно-оптического кабеля. Наиболее популярен кабель Туре 1 стандарта IBM, состоящий из двух пар скрученных проводов, экранированных проводящей оплеткой, которую положено заземлять. Его характеристики примерно соответствуют характеристикам UTP-кабеля категории 5.

Коаксиальный кабель представляет собой медный проводник, покрытый диэлектриком и окруженный свитой из тонких медных проводников экранирующей защитной оболочкой. Коаксиальные кабели для телекоммуникаций делятся на две группы:

    толстые коаксиалы;

    тонкие коаксиалы.

Толстый коаксиальный кабель имеет наружный диаметр 12, 5 мм и достаточно толстый проводник (2, 17 мм), обеспечивающий хорошие электрические и механические характеристики. Скорость передачи данных по толстому коаксиальному кабелю достаточно высокая (до 50 Мбит/с), но, учитывая определенное неудобство работы с ним и его значительную стоимость, рекомендовать его для использования в сетях передачи данных можно далеко не всегда.Тонкий коаксиальный кабель имеет наружный диаметр 5-6 мм, он дешевле и удобнее в работе, но тонкий проводник в нем (0, 9 мм) обусловливает худшие электрические (передает сигнал с допустимым затуханием на меньшее расстояние) и механические характеристики. Рекомендуемые скорости передачи данных по "тонкому" коаксиалу не превышают 10 Мбит/с.

Основу волоконно-оптического кабеля составляют "внутренние подкабели" - стеклянные или пластиковые волокна диаметром от 5 (одномодовые) до 100 (многомодовые) микрон, окруженные твердым заполнителем и помещенные в защитную оболочку диаметром 125-250 мкм. В одном кабеле может содержаться от одного до нескольких сотен таких "внутренних подкабелей". Кабель, в свою очередь, окружен заполнителем и покрыт более толстой защитной оболочкой, внутри которой проложен один или несколько силовых элементов, принимающих на себя обеспечение механической прочности кабеля.

По одномодовому волокну (диаметр их 5-15 мкм) оптический сигнал распространяется, почти не отражаясь от стенок волокна (входит в волокно параллельно его стенкам), чем обеспечивается очень широкая полоса пропускания (до сотен гигагерц на километр). По многомодовому волокну (диаметр его 40-100 мкм) распространяются сразу много сигналов, каждый из которых входит в волокно под своим углом (своей модой) и, соответственно, отражается от стенок волокна в разных местах (полоса пропускания многомодового волокна 500-800 МГц/км).

Источником распространяемого по оптоволоконному кабелю светового луча является преобразователь электрических сигналов в оптические, например светодиод или полупроводниковый лазер. Кодирование информации осуществляется изменением интенсивности светового луча. Физической основой передачи светового луча по волокну является принцип полного внутреннего отражения луча от стенок волокна, обеспечивающий минимальное затухание сигнала, наивысшую защиту от внешних электромагнитных полей и высокую скорость передачи. По оптоволоконному кабелю, имеющему большое число волокон, можно передавать огромное количество сообщений. На другом конце кабеля принимающий прибор преобразует световые сигналы в электрические. Скорость передачи данных по оптоволоконному кабелю очень высока и достигает величины 1000 Мбит/с, но он очень дорогой и используется обычно лишь для прокладки ответственных магистральных каналов связи. Такой кабель связывает столицы и крупные города большинства стран мира, а проложенный по дну Атлантического океана кабель связывает Европу с Америкой. Оптоволоконный кабель соединяет Санкт-Петербург с Москвой, прибалтийскими и скандинавскими странами, кроме того, он проложен в тоннелях метро и связывает все районы города. В вычислительных сетях оптоволоконный кабель используется на наиболее ответственных их участках, в частности в сети Интернет. Возможности оптоволоконных каналов поистине безграничны: по одному толстому магистральному оптоволоконному кабелю можно одновременно организовать несколько сот тысяч телефонных каналов, несколько тысяч видеотелефонных каналов и около тысячи телевизионных каналов.

Радиоканал - это беспроводный канал связи, прокладываемый через эфир. Система передачи данных (СПД) по радиоканалу включает в себя радиопередатчик и радиоприемник, настроенные на один и тот же радиоволновой диапазон, который определяется частотной полосой электромагнитного спектра, используемой для передачи данных. Часто такую СПД называют просто радиоканалом. Скорости передачи данных по радиоканалу практически не ограничены (они ограничиваются полосой пропускания приемо-передающей аппаратуры). Высокоскоростной радиодоступ предоставляет пользователям каналы со скоростью передачи 2 Мбит/"с и выше. В ближайшем будущем ожидаются радиоканалы со скоростями 20-50 Мбит/с. В табл. 15. 1 представлены названия радиоволн и соответствующие им частотные полосы.

Таблица 15. 1 . Диапазоны радиоволн

Для коммерческих телекоммуникационных систем чаще всего используются частотные диапазоны 902-928 МГц и 2, 4-2, 48 ГГц (в некоторых странах, например США, при малых уровнях мощности излучения - до 1 Вт - разрешено использовать эти диапазоны без государственного лицензирования).

Беспроводные каналы связи обладают плохой помехозащищенностью, но обеспечивают пользователю максимальную мобильность и оперативность связи. В вычислительных сетях беспроводные каналы связи для передачи данных используются чаще всего там, где применение традиционных кабельных технологий затруднено или просто невозможно. Но в ближайшем будущем ситуация может измениться - активно ведется разработка новой технологии беспроводной связи Bluetooth.

Bluetooth - это технология передачи данных по радиоканалам на короткие расстояния, позволяющая осуществлять связь беспроводных телефонов, компьютеров и различной периферии даже в тех случаях, когда нарушается требование прямой видимости.

Общеупотребительными и уже достаточно известными являются соединения электронной аппаратуры между собой при помощи инфракрасного канала связи. Но эти соединения требуют прямой видимости. Например, пультом дистанционного управления телевизором невозможно воспользоваться, если между вами и телевизором оказался хотя бы лист газетной бумаги.

Первоначально Bluetooth рассматривалась исключительно как альтернатива использованию инфракрасных соединений между различными портативными устройствами. Но сейчас специалисты предсказывают уже два направления широкого использования Bluetooth. Первое направление - это домашние сети, включающие в себя различную электронную технику, в частности компьютеры, телевизоры и т. п. Второе, гораздо более важное направление - локальные сети офисов небольших фирм, где стандарт Bluetooth может прийти на смену традиционным проводным технологиям.

Недостатком Bluetooth является сравнительно низкая скорость передачи данных - она не превышает 720 кбит/с, поэтому эта технология не способна обеспечить передачу видеосигнала.

Телефонные линии связи являются наиболее разветвленными и широко используемыми. По телефонным линиям связи осуществляется передача звуковых (тональных) и факсимильных сообщений, они являются основой построения информационно-справочных систем, систем электронной почты и вычислительных сетей.

По телефонным линиям могут быть организованы и аналоговые, и цифровые каналы передачи информации. Рассмотрим этот вопрос, ввиду его высокой актуальности, несколько подробнее.

"Простая старая телефонная система", в англоязычной аббревиатуре POTS (Primitive Old Telephone System), состоит из двух частей: магистральной системы связи и сети доступа абонентов к ней. Наиболее простой вариант доступа абонентов к магистральной системе - использование абонентского аналогового канала связи. Большинство телефонных аппаратов подключаются к автоматической телефонной станции (АТС), являющейся уже элементом магистральной системы, именно так.

Телефонный микрофон преобразует звуковые колебания в аналоговый электрический сигнал, который и передается по абонентской линии в АТС. Требуемая для передачи человеческого голоса полоса частот составляет примерно 3 кГц, в диапазоне от 300 Гц до 3, 3 кГц. При снятии телефонной трубки формируется сигнал "off-hook", сообщающий АТС о вызове, и, если телефонная станция не занята, набирается нужный телефонный номер, который передается в АТС в виде последовательности импульсов (при импульсном наборе) или в виде комбинации сигналов звуковой частоты (при тональном наборе). Завершается разговор сигналом "on-hook", формируемым при опускании трубки. Такой тип процедуры вызова называется "in band", поскольку передача сигналов вызова производится по тому же каналу, что и передача речи.

Основной функцией информационной системы является хранение информации и ее перенос в пространстве. Совокупность технических средств для передачи сообщений от источника к потребителю называется системой связи. Этими средствами являются передающее устройство, линия связи и приемное устройство. Иногда в понятие система связи включаются источник и потребитель сообщений.

Структурная схема простейшей системы связи представлена на рисунке 2. Здесь исходным пунктом является источник сообщения. Источник может вырабатывать непрерывное или дискретное сообщения. Источником сообщений и получателем в одних системах связи может быть человек, в других - различного рода устройства (автомат, вычислительная машина и т. п.). Передача сообщений на расстояние осуществляется с помощью какого-либо материального носителя (бумага, магнитная лента и т.п.) или физического процесса (звуковых или электромагнитных волн, тока и.т.п.).

Источник информации или сообщения - это физический объект, система или явление, формирующие передаваемое сообщение.

Сообщение - это значение или изменение некоторой физической величины, отражающие состояние объекта (системы или явления). Как правило, первичные сообщения - речь, музыка, изображения, измерения параметров окружающей среды и т.д., представляют собой функции времени - f (t) или других аргументов - f (x, y, z) неэлектрической природы (акустическое давление, температура, распределение яркости на некоторой плоскости и т.п.).

Рис.2. Структурная схема системы связи.

Каждое i - ое сообщение источника есть произвольная последовательность элементов алфавита
(
,
, ...,) длиной
m , где верхний индекс у элементов есть номер последовательности, а нижний индекс означает только место буквы в сообщении, но не ее вид.

При m = 1 сообщением является одна буква, то есть такое сообщение есть элементарное сообщение . В общем случае при m > 1 одна и та же буква может появиться в сообщении несколько раз. Общим свойством элементарного сообщения является его неделимость на более мелкие сообщения.

Конечное множество сообщений X c заданным на нем распределением вероятностей p ( x ) называется дискретным ансамблем сообщений и обозначается { X , p ( x )}.

Устройство, преобразующее сообщение в сигнал, называют передающим устройством, а устройство, преобразующее принятый сигнал в сообщение, - приемным устройством.

С помощью преобразователя в передающем устройстве сообщение а , которое может иметь любую физическую природу (изображение, звуковое колебание и т.п.), преобразуется в первичный электрический сигнал b (t ). В телефонии, например, эта операция сводится к превращению звукового давления в пропорционально изменяющийся электрический ток микрофона. В телеграфии сначала производится кодирование, в результате которого последовательность элементов сообщения (букв) заменяется последовательностью кодовых символов (0, 1 или точка, тире), которая затем с помощью телеграфного аппарата преобразуется в последовательность электрических импульсов постоянного тока.

В передатчике первичный сигнал b (t ) (обычно низкочастотный) превращается во вторичный (высокочастотный) сигнал u (t ), пригодный для передачи по используемому каналу. Это осуществляется посредством модуляции.

Преобразование сообщения в сигнал должно быть обратимым. В этом случае по выходному сигналу можно, в принципе, восстановить входной первичный сигнал, т. е. получить всю информацию, содержащуюся в переданном сообщении. В противном случае часть информации будет потеряна при передаче, даже если сигнал доходит до приемного устройства без искажений.

Физический процесс, отображающий (несущий) передаваемое сообщение, называется сигналом.

Сигнал – это материально-энергетическая форма представления информации. Другими словами, сигнал – это переносчик информации, один или несколько параметров которого, изменяясь, отображают сообщение.

Цепь “информация – сообщение – сигнал” – это пример процесса обработки, необходимой там, где находится источник информации. На стороне потребителя информации осуществляется обработка в обратном порядке: “сигнал – сообщение – информация”.

Любое преобразование сообщения в определенный сигнал путем установления между ними однозначного соответствия называют в широком смысле кодированием.

Кодирование может включать в себя процессы преобразования и дискретизации непрерывных сообщений (аналого-цифровое преобразование), модуляцию (манипуляцию в цифровых системах связи) и непосредственно кодирование в узком смысле слова. Обратная операция называется декодированием.

Линией связи называется среда, используемая для передачи сигналов от передатчика приемнику.

В системах электрической связи - это кабель или волновод, в системах радиосвязи - область пространства, в котором распространяются электромагнитные волны от передатчика к приемнику. При передаче сигнал может искажаться и на него могут накладываться помехи n (t ).

Приемное устройство обрабатывает принятое колебание z (t )=u (t )+n (t ), представляющее собой сумму пришедшего искаженного сигнала u (t ) и помехи n (t ), и восстанавливает по нему сообщение , которое с некоторой погрешностью отражает переданное сообщение a . Другими словами, приемник должен на основе анализа колебания z (t ) определить, какое из возможных сообщений передавалось. Поэтому приемное устройство является одним из наиболее ответственных и сложных элементов системы связи.

Каналом связи называется совокупность средств, обеспечивающих передачу сигнала от некоторой точки А системы до точки В (рис. 3).

Точки А и В могут быть выбраны произвольно, лишь бы между ними проходил сигнал. Часть системы связи, расположенная до точки А , является источником сигнала для этого канала.

Рис. 3. Канал связи.

Канал как источник помех, оказывает на передаваемый сигнал некоторое влияние. Задачами приемника является выделение из зашумленного сигнала переданного сообщения и отправка его потребителю.

Классифицируют каналы связи по различным признакам, в том числе по математическому описанию (непрерывные и дискретные каналы, непрерывного и дискретного времени).

Если сигналы, поступающие на вход канала и принимаемые с его выхода, являются дискретными по состояниям, то канал называется дискретным. Если же эти сигналы являются непрерывными, то канал называется непрерывным. Встречаются также дискретно-непрерывные и непрерывно-дискретные каналы, на вход которых поступают дискретные сигналы, а с выхода снимаются непрерывные, или наоборот. Из сказанного видно, что канал может быть дискретным или непрерывным независимо от характера передаваемых сообщений. Более того, в одной и той же системе связи можно выделить как дискретный, так и непрерывный каналы. Все зависит от того, каким образом выбраны точки А и В входа и выхода канала.

В данном пособии будем рассматривать дискретный канал связи .

Если вредным действием помех в канале можно пренебречь, то для анализа используется модель в виде идеализированного канала, называемого каналом без помех . В идеальном канале каждому сообщению на входе однозначно соответствует определенное соотношение на выходе и наоборот. Когда требования к достоверности велики и пренебрежение неоднозначностью связи между сообщениями x и y недопустимо, используется более сложная модель – канал с помехами.

Простейший класс моделей каналов образуют дискретные каналы без памяти; они определяются следующим образом. Входом является последовательность букв (элементов) из конечного алфавита, пусть
,
выходом – последовательность букв того же самого или другого алфавита, скажем
. Наконец, каждая буква выходной последовательности зависит статистически только от буквы, стоящей на соответствующей позиции во входной последовательности, и определяется заданной условной вероятностью
, определенной для всех буквалфавита на входе и всех буквна выходе. Примером может служить двоичный симметричный канал (рис.4), который представляет собой дискретный канал без памяти с двоичными последовательностями на входе и выходе, в котором каждый символ последовательности на входе с некоторой вероятностью 1-q воспроизводится на выходе канала правильно и с вероятностью q изменяется шумом на противоположный символ. В общем случае, в дискретном канале без памяти переходные вероятности исчерпывают собой все известные сведения о том, как сигнал на входе, взаимодействуя с шумом, образует сигнал на выходе.

Рис. 4. Двоичный симметричный канал.

Намного более широкий класс каналов – каналов с памятью, образуют каналы, в которых сигналами на входе являются последовательности букв из конечных алфавитов, но в которых каждая буква на выходе может статистически зависеть не только от соответствующей буквы входной последовательности.

"